Dynamic and quantitative Ca2+ measurements using improved cameleons

被引:655
作者
Miyawaki, A
Griesbeck, O
Heim, R
Tsien, RY [1 ]
机构
[1] Univ Calif San Diego, Dept Pharmacol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
关键词
D O I
10.1073/pnas.96.5.2135
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cameleons are genetically-encoded fluorescent indicators for Ca2+ based on green fluorescent protein variants and calmodulin (CaM). Because cameleons can be targeted genetically and imaged by one- or two-photon excitation microscopy, they offer great promise for monitoring Ca2+ in whole organisms, tissues, organelles, and submicroscopic environments in which measurements were previously impossible. However, the original cameleons suffered from significant pH interference, and their Ca2+-buffering and cross-reactivity with endogenous CaM signaling pathways was uncharacterized. We have now greatly reduced the pH-sensitivity of the cameleons by introducing mutations V68L and Q69K into the acceptor yellow green fluorescent protein. The resulting new cameleons permit Ca2+ measurements despite significant cytosolic acidification. When Ca2+ is elevated, the CaM and CaM-binding peptide fused together in a cameleon predominantly interact with each other rather than with free CaM and CaM-dependent enzymes. Therefore, if cameleons are overexpressed, the primary effect is likely to be the unavoidable increase in Ca2+ buffering rather than specific perturbation of CaM-dependent signaling.
引用
收藏
页码:2135 / 2140
页数:6
相关论文
共 29 条