Release of antibiotics from electrospun bicomponent fibers

被引:113
作者
Buschle-Diller, Gisela [1 ]
Cooper, Jared [1 ]
Xie, Zhiwei [1 ]
Wu, Ye [1 ]
Waldrup, James [1 ]
Ren, Xuehong [1 ]
机构
[1] Auburn Univ, Dept Polymer & Fiber Engn, Auburn, AL 36849 USA
关键词
electrospinning; biocompatible bicomponent fibers; rheology; poly(epsilon-caprolactone); poly(L-lactic acid); drug release;
D O I
10.1007/s10570-007-9183-3
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Biocompatible nanofibers that are capable of adapting to the physiological conditions of the human body have become increasingly important for clinical applications in recent years. Electrospun fiber mats offer particular advantages due to their large surface area and their sorption/release properties. If loaded with drugs, delivery properties can be tailored to a specific release rate. This research work focuses on poly(L-lactic acid) (PLA) and poly(epsilon-caprolactone) (PCL) incorporating three different model antibiotics as well as bicomponent fibers made from PLA and PCL containing the same model drugs. Tetracycline and chlorotetracycline hydrochloride, and amphotericin B were selected as model drugs and their release properties and antimicrobial effectiveness studied. The surface morphology and the average diameter of the fibers strongly depended on the individual spinning system which in turn influenced the release of the therapeutic compounds from the fibers. Tetracycline was discharged from PCL at the highest rate while amphotericin B was slowest. PCL almost completely liberated any of the drugs over time while PLA only released about 10% total. By forming bicomponent PCL-PLA fibers surface and release characteristics could be modified to fit a sensible drug delivery.
引用
收藏
页码:553 / 562
页数:10
相关论文
共 40 条
[1]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO
[2]  
2-H
[3]   Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning [J].
Boland, ED ;
Wnek, GE ;
Simpson, DG ;
Pawlowski, KJ ;
Bowlin, GL .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2001, 38 (12) :1231-1243
[4]  
Buschle-Diller G, 2006, MODIFIED FIBERS WITH MEDICAL AND SPECIALTY APPLICATIONS, P67
[5]  
BUSCHLEDILLER G, 2005, 229 ACS NAT M SAN DI
[6]  
BUSCHLEDILLER G, 2003, INT P NONW TECH C BA
[7]  
Chu CC, 1997, WOUND CLOSURE MAT DE
[8]  
CHUNG HY, 2002, Patent No. 2001US24948
[9]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[10]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8