Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway

被引:122
作者
Posas, F
Witten, EA
Saito, H
机构
[1] Dana Farber Canc Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1128/MCB.18.10.5788
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Exposure of yeast cells to increases in extracellular osmolarity activates the HOG1 mitogen-activated protein (MAP) kinase cascade, which is composed of three tiers of protein kinases: (i) the SSK2, SSK22, and STE11 MAB kinase kinase kinases (MAPKKKs), (ii) the PBS2 MAPKK, and (iii) the HOG1 MAP kinase. Activation of the MAP kinase cascade is mediated by two upstream mechanisms. The SLN1-YPD1-SSK1 two-component osmosensor activates the SSK2 and SSK22 MAPKKKs by direct interaction of the SSK1 response regulator with these MAPKKKs. The second mechanism of HOG1 MAP kinase activation is independent of the two-component osmosensor and involves the SHO1 transmembrane protein and the STE11 MAPKKK. Only PBS2 and HOG1 are common to the two mechanisms. We conducted an exhaustive mutant screening to identify additional elements required for activation of STE11 by osmotic stress. We found that strains with mutations in the STE50 gene, in combination with ssk2 Delta ssk22 Delta mutations, were unable to induce HOG1 phosphorylation after osmotic stress. Both two-hybrid analyses and coprecipitation assays demonstrated that the N-terminal domain of STE50 binds strongly to the N-terminal domain of STE11. The binding of STE50 to STE11 is constitutive and is mot affected by osmotic stress. Furthermore, the two proteins relocalize similarly after osmotic shock. It was concluded that STE50 fulfills an essential role in the activation of the high-osmolarity glycerol response pathway by acting as an integral subunit of the STE11 MAPKKK.
引用
收藏
页码:5788 / 5796
页数:9
相关论文
共 28 条
[1]   OPTIMAL CONDITIONS FOR MUTAGENESIS BY N-METHYL-N'-NITRO-N-NITROSOGUANIDINE IN ESCHERICHIA COLI K12 [J].
ADELBERG, EA ;
MANDEL, M ;
CHEN, GCC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1965, 18 (5-6) :788-&
[2]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[3]  
Barr MM, 1996, MOL CELL BIOL, V16, P5597
[4]   PBS2, A YEAST GENE ENCODING A PUTATIVE PROTEIN-KINASE, INTERACTS WITH THE RAS2 PATHWAY AND AFFECTS OSMOTIC SENSITIVITY OF SACCHAROMYCES-CEREVISIAE [J].
BOGUSLAWSKI, G .
JOURNAL OF GENERAL MICROBIOLOGY, 1992, 138 :2425-2432
[5]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[6]   THE RETINOBLASTOMA PROTEIN ASSOCIATES WITH THE PROTEIN PHOSPHATASE TYPE-1 CATALYTIC SUBUNIT [J].
DURFEE, T ;
BECHERER, K ;
CHEN, PL ;
YEH, SH ;
YANG, YZ ;
KILBURN, AE ;
LEE, WH ;
ELLEDGE, SJ .
GENES & DEVELOPMENT, 1993, 7 (04) :555-569
[7]   Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization [J].
Farrar, MA ;
AlberolaIla, J ;
Perlmutter, RM .
NATURE, 1996, 383 (6596) :178-181
[8]  
FERRIGNO P, UNPUB
[9]   CLONING VECTORS FOR THE SYNTHESIS OF EPITOPE-TAGGED, TRUNCATED AND CHIMERIC PROTEINS IN SACCHAROMYCES-CEREVISIAE [J].
FOREMAN, PK ;
DAVIS, RW .
GENE, 1994, 144 (01) :63-68
[10]   MAP KINASE PATHWAYS IN YEAST - FOR MATING AND MORE [J].
HERSKOWITZ, I .
CELL, 1995, 80 (02) :187-197