Rhizobium common nod genes are required for biofilm formation

被引:52
作者
Fujishige, Nancy A. [1 ]
Lum, Michelle R. [1 ]
De Hoff, Peter L. [2 ]
Whitelegge, Julian P. [2 ,3 ,4 ]
Faull, Kym F. [2 ,3 ,4 ]
Hirsch, Ann M. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Pasarow Mass Spectrometry Lab, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Semel Inst, Los Angeles, CA 90095 USA
关键词
D O I
10.1111/j.1365-2958.2007.06064.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In legume nitrogen-fixing symbioses, rhizobial nod genes are obligatory for initiating infection thread formation and root nodule development. Here we show that the common nod genes, nodD1ABC, whose products synthesize core Nod factor, a chitin-like oligomer, are also required for the establishment of the three-dimensional architecture of the biofilm of Sinorhizobium meliloti. Common nod gene mutants form a biofilm that is a monolayer. Moreover, adding Nod Factor antibody to S. meliloti cells inhibits biofilm formation, while chitinase treatment disrupts pre-formed biofilms. These results attest to the involvement of core Nod factor in rhizobial biofilm establishment. However, luteolin, the plant-derived inducer of S. meliloti's nod genes, is not required for mature biofilm formation, although biofilm establishment is enhanced in the presence of this flavonoid inducer. Because biofilm formation is plant-inducer-independent and because all nodulating rhizobia, both alpha- and beta-proteobacteria have common nod genes, the role of core Nod factor in biofilm formation is likely to be an ancestral and evolutionarily conserved function of these genes.
引用
收藏
页码:504 / 515
页数:12
相关论文
共 40 条
[1]   RHIZOBIUM-MELILOTI LIPOOLIGOSACCHARIDE NODULATION FACTORS - DIFFERENT STRUCTURAL REQUIREMENTS FOR BACTERIAL ENTRY INTO TARGET ROOT HAIR-CELLS AND INDUCTION OF PLANT SYMBIOTIC DEVELOPMENTAL RESPONSES [J].
ARDOUREL, M ;
DEMONT, N ;
DEBELLE, FD ;
MAILLET, F ;
DEBILLY, F ;
PROME, JC ;
DENARIE, J ;
TRUCHET, G .
PLANT CELL, 1994, 6 (10) :1357-1374
[2]   Galactosides in the rhizosphere:: Utilization by Sinorhizobium meliloti and development of a biosensor [J].
Bringhurst, RM ;
Cardon, ZG ;
Gage, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (08) :4540-4545
[3]   Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti [J].
Cheng, HP ;
Walker, GC .
JOURNAL OF BACTERIOLOGY, 1998, 180 (19) :5183-5191
[4]  
Dusha I, 1999, FEMS MICROBIOL LETT, V179, P491, DOI 10.1111/j.1574-6968.1999.tb08768.x
[5]   syrM is involved in the determination of the amount and ratio of the two forms of the acidic exopolysaccharide EPSI in Rhizobium meliloti [J].
Dusha, I ;
Oláh, B ;
Szegletes, Z ;
Erdei, L ;
Kondorosi, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1999, 12 (09) :755-765
[6]   REPLICATION OF AN ORIGIN-CONTAINING DERIVATIVE OF PLASMID RK2 DEPENDENT ON A PLASMID FUNCTION PROVIDED IN TRANS [J].
FIGURSKI, DH ;
HELINSKI, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (04) :1648-1652
[7]   CONSTRUCTION OF A BROAD HOST RANGE COSMID CLONING VECTOR AND ITS USE IN THE GENETIC-ANALYSIS OF RHIZOBIUM MUTANTS [J].
FRIEDMAN, AM ;
LONG, SR ;
BROWN, SE ;
BUIKEMA, WJ ;
AUSUBEL, FM .
GENE, 1982, 18 (03) :289-296
[8]   Investigations of Rhizobium biofilm formation [J].
Fujishige, NA ;
Kapadia, NN ;
De Hoff, PL ;
Hirsch, AM .
FEMS MICROBIOLOGY ECOLOGY, 2006, 56 (02) :195-206
[9]   A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots [J].
Fujishige, NA ;
Kapadia, NN ;
Hirsch, AM .
BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 2006, 150 (01) :79-88
[10]  
FUJISHIGE NA, 2006, BIOL PLANT MICROBE I, V5, P292