Accuracy and generalization capability of an automatic method for the detection of typical brain hypometabolism in prodromal Alzheimer disease

被引:20
作者
De Carli, Fabrizio [1 ]
Nobili, Flavio [2 ]
Pagani, Marco [3 ,4 ]
Bauckneht, Matteo [5 ,6 ]
Massa, Federico [2 ]
Grazzini, Matteo [2 ]
Jonsson, Cathrine [4 ]
Peira, Enrico [7 ]
Morbelli, Silvia [5 ,6 ]
Arnaldi, Dario [2 ]
Weiner, Michael W. [8 ,91 ]
Aisen, Paul [9 ]
Weiner, Michael [8 ]
Petersen, Ronald [10 ]
Jack, Clifford R., Jr. [10 ]
Jagust, William [11 ,91 ]
Trojanowki, John Q. [12 ,37 ,92 ,93 ]
Toga, Arthur W. [9 ,13 ]
Beckett, Laurel [14 ]
Saykin, Andrew J. [15 ]
Morris, John [16 ]
Shaw, Leslie M. [12 ,37 ,92 ]
Khachaturian, Zaven [17 ]
Sorensen, Greg [18 ]
Carrillo, Maria [19 ]
Kuller, Lew [20 ]
Raichle, Marc [16 ]
Paul, Steven [21 ]
Davies, Peter [22 ]
Fillit, Howard [23 ]
Hefti, Franz [24 ]
Holtzman, David [16 ]
Mesulam, M. Marcel [25 ]
Potter, William [26 ]
Snyder, Peter [27 ]
Logovinsky, Veronika
Montine, Tom [16 ,29 ]
Jimenez, Gustavo [13 ]
Donohue, Michael [13 ,30 ]
Gessert, Devon [13 ]
Harless, Kelly [13 ]
Salazar, Jennifer [13 ]
Cabrera, Yuliana [13 ]
Walter, Sarah [13 ]
Hergesheimer, Lindsey [13 ]
Bernstein, Matthew [10 ]
Fox, Nick [31 ]
Thompson, Paul [32 ]
Schuff, Norbert [33 ]
DeCArli, Charles [14 ]
机构
[1] CNR, Inst Mol Bioimaging & Physiol, Largo Paolo Daneo 3, I-16132 Genoa, Italy
[2] Univ Genoa, IRCCS Polyclin San Martino IST, Dept Neurosci DINOGMI, Genoa, Italy
[3] CNR, Inst Cognit Sci & Technol, Rome, Italy
[4] Karolinska Univ Hosp, Imaging & Physiol, Med Radiat Phys & Nucl Med, Stockholm, Sweden
[5] Univ Genoa, Dept Hlth Sci DISSAL, Genoa, Italy
[6] Polyclin San Martino Hosp, Nucl Med Unit, Genoa, Italy
[7] Natl Inst Nucl Phys INFN, Genoa, Italy
[8] UC San Francisco, San Francisco, CA USA
[9] Univ Southern Calif, Los Angeles, CA 90089 USA
[10] Mayo Clin, Rochester, MN USA
[11] Univ Calif Berkeley, Berkeley, CA USA
[12] Univ Penn, Philadelphia, PA 19104 USA
[13] USC, Los Angeles, CA USA
[14] Univ Calif Davis, Davis, CA USA
[15] Indiana Univ, Bloomington, IN 47405 USA
[16] Washington Univ, St Louis, MO 63130 USA
[17] Prevent Alzheimers Dis 2020, Rockville, MD USA
[18] Siemens, Munich, Germany
[19] Alzheimers Assoc, Chicago, IL USA
[20] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[21] Cornell Univ, Ithaca, NY 14853 USA
[22] Yeshiva Univ, Albert Einstein Col Med, New York, NY 10033 USA
[23] AD Drug Discovery Fdn, New York, NY USA
[24] Acumen Pharmceut, Livermore, CA USA
[25] Northwestern Univ, Evanston, IL 60208 USA
[26] NIMH, Rockville, MD 20852 USA
[27] Brown Univ, Providence, RI 02912 USA
[28] HMS, BWH, Boston, MA USA
[29] Univ Washington, Seattle, WA 98195 USA
[30] Univ Calif San Diego, La Jolla, CA USA
[31] Univ London, London, England
[32] Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90024 USA
[33] UCSF, MRI, San Francisco, CA USA
[34] Univ Michigan, Ann Arbor, MI 48109 USA
[35] Univ Utah, Salt Lake City, UT 84112 USA
[36] Banner Alzheimers Inst, Phoenix, AZ USA
[37] UPenn Sch Med, Philadelphia, PA USA
[38] UC Irvine, Irvine, CA USA
[39] NIA, Bethesda, MD 20892 USA
[40] Johns Hopkins Univ, Baltimore, MD 21218 USA
[41] Richard Frank Consulting, Sacramento, CA USA
[42] Oregon Hlth & Sci Univ, Portland, OR 97201 USA
[43] Univ Calif San Diego, La Jolla, CA 92093 USA
[44] Baylor Coll Med, Houston, TX 77030 USA
[45] Columbia Univ, Med Ctr, New York, NY 10027 USA
[46] Univ Alabama Birmingham, Birmingham, AL USA
[47] Mt Sinai Sch Med, New York, NY USA
[48] Rush Univ, Med Ctr, Chicago, IL 60612 USA
[49] Wien Ctr, Vienna, Austria
[50] NYU, New York, NY 10003 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
Alzheimer disease; MCI due to AD; FDG-PET; Discriminant analysis; Neuroimage classification; Classification and prediction; Neurodegenerative disorders; Support vector machine; MILD COGNITIVE IMPAIRMENT; FDG-PET; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; NATIONAL INSTITUTE; MCI; DEMENTIA; RECOMMENDATIONS; VALIDATION; CONFIDENCE;
D O I
10.1007/s00259-018-4197-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeThe aim of this study was to verify the reliability and generalizability of an automatic tool for the detection of Alzheimer-related hypometabolic pattern based on a Support-Vector-Machine (SVM) model analyzing F-18-fluorodeoxyglucose (FDG) PET data.MethodsThe SVM model processed metabolic data from anatomical volumes of interest also considering interhemispheric asymmetries. It was trained on a homogeneous dataset from a memory clinic center and tested on an independent multicentric dataset drawn from the Alzheimer's Disease Neuroimaging Initiative. Subjects were included in the study and classified based on a diagnosis confirmed after an adequate follow-up time.ResultsThe accuracy of the discrimination between patients with Alzheimer Disease (AD), in either prodromal or dementia stage, and normal aging subjects was 95.8%, after cross-validation, in the training set. The accuracy of the same model in the testing set was 86.5%. The role of the two datasets was then reversed, and the accuracy was 89.8% in the multicentric training set and 88.0% in the monocentric testing set. The classification rate was also evaluated in different subgroups, including non-converter mild cognitive impairment (MCI) patients, subjects with MCI reverted to normal conditions and subjects with non-confirmed memory concern. The percent of pattern detections increased from 77% in early prodromal AD to 91% in AD dementia, while it was about 10% for healthy controls and non-AD patients.ConclusionsThe present findings show a good level of reproducibility and generalizability of a model for detecting the hypometabolic pattern in AD and confirm the accuracy of FDG-PET in Alzheimer disease.
引用
收藏
页码:334 / 347
页数:14
相关论文
共 44 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Functional neuroimaging and clinical features of drug naive patients with de novo Parkinson's disease and probable RBD [J].
Arnaldi, Dario ;
Morbelli, Silvia ;
Brugnolo, Andrea ;
Girtler, Nicola ;
Picco, Agnese ;
Ferrara, Michela ;
Accardo, Jennifer ;
Buschiazzo, Ambra ;
de Carli, Fabrizio ;
Pagani, Marco ;
Nobili, Flavio .
PARKINSONISM & RELATED DISORDERS, 2016, 29 :47-53
[3]   Metabolic correlates of reserve and resilience in MCI due to Alzheimer's Disease (AD) [J].
Bauckneht, Matteo ;
Chincarini, Andrea ;
Piva, Roberta ;
Arnaldi, Dario ;
Girtler, Nicola ;
Massa, Federico ;
Pardini, Matteo ;
Grazzini, Matteo ;
Efeturk, Hulya ;
Pagani, Marco ;
Sambuceti, Gianmario ;
Nobili, Flavio ;
Morbelli, Silvia .
ALZHEIMERS RESEARCH & THERAPY, 2018, 10
[4]   Patterns of regional cerebellar atrophy in genetic frontotemporal dementia [J].
Bocchetta, Martina ;
Cardoso, M. Jorge ;
Cash, David M. ;
Ourselin, Sebastien ;
Warren, Jason D. ;
Rohrer, Jonathan D. .
NEUROIMAGE-CLINICAL, 2016, 11 :287-290
[5]   ALZHEIMERS-DISEASE - AMYLOID PLAQUES IN THE CEREBELLUM [J].
BRAAK, H ;
BRAAK, E ;
BOHL, J ;
LANG, W .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1989, 93 (2-3) :277-287
[6]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[7]   Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages [J].
Cabral, Carlos ;
Morgado, Pedro M. ;
Costa, Durval Campos ;
Silveira, Margarida .
COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 58 :101-109
[8]   FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort [J].
Caminiti, Silvia Paola ;
Ballarini, Tommaso ;
Sala, Arianna ;
Cerami, Chiara ;
Presotto, Luca ;
Santangelo, Roberto ;
Fallanca, Federico ;
Vanoli, Emilia Giovanna ;
Gianolli, Luigi ;
Iannaccone, Sandro ;
Magnani, Giuseppe ;
Perani, Daniela .
NEUROIMAGE-CLINICAL, 2018, 18 :167-177
[9]   Summary Metrics to Assess Alzheimer Disease Related Hypometabolic Pattern with 18F-FDG PET: Head-to-Head Comparison [J].
Caroli, Anna ;
Prestia, Annapaola ;
Chen, Kewei ;
Ayutyanont, Napatkamon ;
Landau, Susan M. ;
Madison, Cindee M. ;
Haense, Cathleen ;
Herholz, Karl ;
Nobili, Flavio ;
Reiman, Eric M. ;
Jagust, William J. ;
Frisoni, Giovanni B. .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (04) :592-600
[10]   Cerebellar Amyloid-β Plaques: How Frequent Are They, and Do They Influence 18F-Florbetaben SUV Ratios? [J].
Catafau, Ana M. ;
Bullich, Santiago ;
Seibyl, John P. ;
Barthel, Henryk ;
Ghetti, Bernardino ;
Leverenz, James ;
Ironside, James W. ;
Schulz-Schaeffer, Walter J. ;
Hoffmann, Anja ;
Sabri, Osama .
JOURNAL OF NUCLEAR MEDICINE, 2016, 57 (11) :1740-1745