Signal perception in plant pathogen defense

被引:119
作者
Nürnberger, T [1 ]
机构
[1] Inst Pflanzenbiochem, Abt Stress & Entwicklungsbiol, D-06120 Halle, Germany
关键词
avirulence gene; elicitor; elicitor receptor; pathogen defense; resistance gene; signal transduction;
D O I
10.1007/s000180050283
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Highly sensitive and specific recognition systems for microbial pathogens are essential for disease resistance in plants. Structurally diverse elicitors from various pathogens have been identified and shown to trigger plant defense mechanisms. Elicitor recognition by the plant is assumed to be mediated by receptors. Plant receptors for fungus-derived elicitors appear to reside preferentially in the plasma membrane, whereas viral and bacterial elicitors may enter the plant cell and are perceived intracellularly. Receptor activation initiates an intracellular signal transduction cascade leading to stimulation of a characteristic set of plant defense responses. Isolation of plant elicitor receptors and their encoding genes is expected to provide significant information on the molecular basis of signal perception and intracellular signal generation in plant-pathogen interactions.
引用
收藏
页码:167 / 182
页数:16
相关论文
共 150 条
[1]   Analysis of the role of the Pseudomonas syringae pv syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations [J].
Alfano, JR ;
Bauer, DW ;
Milos, TM ;
Collmer, A .
MOLECULAR MICROBIOLOGY, 1996, 19 (04) :715-728
[2]  
Alfano JR, 1996, PLANT CELL, V8, P1683, DOI 10.1105/tpc.8.10.1683
[3]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[4]   Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region [J].
Anderson, PA ;
Lawrence, GJ ;
Morrish, BC ;
Ayliffe, MA ;
Finnegan, EJ ;
Ellis, JG .
PLANT CELL, 1997, 9 (04) :641-651
[5]   POPA1, A PROTEIN WHICH INDUCES A HYPERSENSITIVITY-LIKE RESPONSE ON SPECIFIC PETUNIA GENOTYPES, IS SECRETED VIA THE HRP PATHWAY OF PSEUDOMONAS-SOLANACEARUM [J].
ARLAT, M ;
VANGIJSEGEM, F ;
HUET, JC ;
PERNOLLET, JC ;
BOUCHER, CA .
EMBO JOURNAL, 1994, 13 (03) :543-553
[6]   HOST-PATHOGEN INTERACTIONS .10. FRACTIONATION AND BIOLOGICAL-ACTIVITY OF AN ELICITOR ISOLATED FROM MYCELIAL WALLS OF PHYTOPHTHORA-MEGASPERMA VAR SOJAE [J].
AYERS, AR ;
EBEL, J ;
VALENT, B ;
ALBERSHEIM, P .
PLANT PHYSIOLOGY, 1976, 57 (05) :760-765
[7]   Signaling in plant-microbe interactions [J].
Baker, B ;
Zambryski, P ;
Staskawicz, B ;
DineshKumar, SP .
SCIENCE, 1997, 276 (5313) :726-733
[8]  
BASSE CW, 1993, J BIOL CHEM, V268, P14724
[9]   ERWINIA-CHRYSANTHEMI HARPIN(ECH) - AN ELICITOR OF THE HYPERSENSITIVE RESPONSE THAT CONTRIBUTES TO SOFT-ROT PATHOGENESIS [J].
BAUER, DW ;
WEI, ZM ;
BEER, SV ;
COLLMER, A .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1995, 8 (04) :484-491
[10]  
BAUREITHEL K, 1994, J BIOL CHEM, V269, P17931