Plasmonic Luneburg and Eaton lenses

被引:187
作者
Zentgraf, Thomas [1 ]
Liu, Yongmin [1 ]
Mikkelsen, Maiken H. [1 ]
Valentine, Jason [1 ,2 ]
Zhang, Xiang [1 ,3 ]
机构
[1] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr NSEC, Berkeley, CA 94720 USA
[2] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SURFACE-PLASMONS; OPTICAL-ELEMENTS; LIGHT; CLOAK;
D O I
10.1038/NNANO.2010.282
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonics takes advantage of the properties of surface plasmon polaritons, which are localized or propagating quasi-particles in which photons are coupled to the quasi-free electrons in metals. In particular, plasmonic devices can confine light in regions with dimensions that are smaller than the wavelength of the photons in free space, and this makes it possible to match the different length scales associated with photonics and electronics in a single nanoscale device(1). Broad applications of plasmonics that have been demonstrated to date include biological sensing(2), sub-diffraction-limit imaging, focusing and lithography(3-5) and nano-optical circuitry(6-10). Plasmonics-based optical elements such as waveguides, lenses, beamsplitters and reflectors have been implemented by structuring metal surfaces(7,8,11,12) or placing dielectric structures on metals(6,13-15) to manipulate the two-dimensional surface plasmon waves. However, the abrupt discontinuities in the material properties or geometries of these elements lead to increased scattering of surface plasmon polaritons, which significantly reduces the efficiency of these components. Transformation optics provides an alternative approach to controlling the propagation of light by spatially varying the optical properties of a material(16,17). Here, motivated by this approach, we use grey-scale lithography to adiabatically tailor the topology of a dielectric layer adjacent to a metal surface to demonstrate a plasmonic Luneburg lens that can focus surface plasmon polaritons. We also make a plasmonic Eaton lens that can bend surface plasmon polaritons. Because the optical properties are changed gradually rather than abruptly in these lenses, losses due to scattering can be significantly reduced in comparison with previously reported plasmonic elements.
引用
收藏
页码:151 / 155
页数:5
相关论文
共 34 条
[1]   Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Fernandez-Dominguez, Antonio I. ;
Sonnefraud, Yannick ;
Maier, Stefan A. ;
Pendry, J. B. .
NANO LETTERS, 2010, 10 (07) :2574-2579
[2]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[3]   Waveguiding in surface plasmon polariton band gap structures [J].
Bozhevolnyi, SI ;
Erland, J ;
Leosson, K ;
Skovgaard, PMW ;
Hvam, JM .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3008-3011
[4]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[5]   An omnidirectional electromagnetic absorber made of metamaterials [J].
Cheng, Qiang ;
Cui, Tie Jun ;
Jiang, Wei Xiang ;
Cai, Ben Geng .
NEW JOURNAL OF PHYSICS, 2010, 12
[6]  
DANNER AJ, 2009, C LAS EL CLEO BALT M, P63306
[7]   Amplification of long-range surface plasmons by a dipolar gain medium [J].
De Leon, Israel ;
Berini, Pierre .
NATURE PHOTONICS, 2010, 4 (06) :382-387
[8]   Refractive micro-optical elements for surface plasmons: from classical to gradient index optics [J].
Devaux, Eloise ;
Laluet, Jean-Yves ;
Stein, Benedikt ;
Genet, Cyriaque ;
Ebbesen, Thomas ;
Weeber, Jean-Claude ;
Dereux, Alain .
OPTICS EXPRESS, 2010, 18 (20) :20610-20619
[9]   Two-dimensional optics with surface plasmon polaritons [J].
Ditlbacher, H ;
Krenn, JR ;
Schider, G ;
Leitner, A ;
Aussenegg, FR .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1762-1764
[10]   Fluorescence imaging of surface plasmon fields [J].
Ditlbacher, H ;
Krenn, JR ;
Felidj, N ;
Lamprecht, B ;
Schider, G ;
Salerno, M ;
Leitner, A ;
Aussenegg, FR .
APPLIED PHYSICS LETTERS, 2002, 80 (03) :404-406