Fast computation of the principal singular vectors of Toeplitz matrices arising in exponential data modelling

被引:11
作者
Elden, L
Sjostrom, E
机构
[1] Department of Mathematics, Linköping University, Numerical Analysis
关键词
algorithms; fast Fourier transform (FFT); Lanczos procedure; signal subspace; singular vector; Toeplitz matrix;
D O I
10.1016/0165-1684(96)00009-6
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A comparison is made of algorithms for computing the largest singular values and corresponding singular vectors of a Toeplitz matrix. In many applications the signal subspace is the subspace spanned by those singular vectors. Algorithms, based on the Lanczos procedure, for computing a few singular values of a sparse matrix are discussed, and the fast Fourier transform (FFT) is used for the matrix-vector multiplication. In particular, we consider a recently developed implicitly restarted Lanczos algorithm, and we give evidence that for Toeplitz matrices arising in exponential data modelling, this algorithm is both more efficient and more reliable than other Lanczos variants. Numerical tests also indicate that this algorithm may be up to one hundred times faster than standard algorithms (from LAPACK) even for problems of modest size.
引用
收藏
页码:151 / 164
页数:14
相关论文
共 30 条
  • [1] Anderson E., 1992, LAPACK User's Guide
  • [2] IMPROVED ALGORITHM FOR NONITERATIVE TIME-DOMAIN MODEL-FITTING TO EXPONENTIALLY DAMPED MAGNETIC-RESONANCE SIGNALS
    BARKHUIJSEN, H
    DEBEER, R
    VANORMONDT, D
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1987, 73 (03): : 553 - 557
  • [3] LARGE-SCALE SPARSE SINGULAR VALUE COMPUTATIONS
    BERRY, MW
    [J]. INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1992, 6 (01): : 13 - 49
  • [4] Calvetti D., 1994, ELECTRON T NUMER ANA, V2, P1
  • [5] TRACKING A FEW EXTREME SINGULAR-VALUES AND VECTORS IN SIGNAL-PROCESSING
    COMON, P
    GOLUB, GH
    [J]. PROCEEDINGS OF THE IEEE, 1990, 78 (08) : 1327 - 1343
  • [6] CULLUM J, 1980, P BIENN C N UM AN
  • [7] CULLUM J, 1979, SPARS MATR P 1978 PH
  • [8] Davis P. J., 2013, Circulant Matrices
  • [9] de Beer R., 1992, INVIVO MAGNETIC RESO, V26, DOI DOI 10.1007/978-3-642-45697-8_7
  • [10] AN EXTENDED SET OF FORTRAN BASIC LINEAR ALGEBRA SUBPROGRAMS
    DONGARRA, JJ
    DUCROZ, J
    HAMMARLING, S
    HANSON, RJ
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1988, 14 (01): : 1 - 17