Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA -: Overexpression in plants alters the composition of phospholipids

被引:69
作者
Delhaize, E
Hebb, DM
Richards, KD
Lin, JM
Ryan, PR
Gardner, RC
机构
[1] CSIRO, Canberra, ACT 2601, Australia
[2] Univ Auckland, Sch Biol Sci, Ctr Gene Technol, Auckland 1, New Zealand
关键词
D O I
10.1074/jbc.274.11.7082
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe the cloning of a wheat cDNA (TaPSS1) that encodes a phosphatidylserine synthase (PSS) and provides the first strong evidence for the existence of this enzyme in a higher eukaryotic cell, The cDNA was isolated on its ability to confer increased resistance to aluminum toxicity when expressed in yeast, The sequence of the predicted protein encoded by TaPSS1 shows homology to PSS from both yeast and bacteria but is distinct from the animal PSS enzymes that catalyze base-exchange reactions. In wheat, Southern blot analysis identified the presence of a small family of genes that cross-hybridized to TaPSS1, and Northern blots showed that aluminum induced TaPSS1 expression in root apices, Expression of TaPSS1 complemented the yeast cho1 mutant that lacks PSS activity and altered the phospholipid composition of wild type yeast, with the most marked effect being increased abundance of phosphatidylserine (PS). Arabidopsis thaliana leaves overexpressing TaPSS1 showed a marked enhancement in PSS activity, which was associated with increased biosynthesis of PS at the expense of bo th phosphatidylinositol and phosphatidylglycerol, Unlike mammalian cells where PS accumulation is tightly regulated even when the capacity for PS biosynthesis is increased, plant cells accumulated large amounts of PS when TaPSS1 was overexpressed. High levels of TaPSS1 expression in Arabidopsis and tobacco (Nicotiana tabacum) led to the appearance of necrotic lesions on leaves, which may have resulted from the excessive accumulation of PS, The cloning of TaPSS1 now provides evidence that the yeast pathway for PS synthesis exists in some plant tissues and provides a tool for understanding the pathways of phospholipid biosynthesis and their regulation in plants.
引用
收藏
页码:7082 / 7088
页数:7
相关论文
共 47 条
[2]  
ATKINSON K, 1980, J BIOL CHEM, V255, P6653
[3]   YEAST MUTANTS AUXOTROPHIC FOR CHOLINE OR ETHANOLAMINE [J].
ATKINSON, KD ;
JENSEN, B ;
KOLAT, AI ;
STORM, EM ;
HENRY, SA ;
FOGEL, S .
JOURNAL OF BACTERIOLOGY, 1980, 141 (02) :558-564
[4]   CD95 (Fas/APO-1) induces an increased phosphatidylserine synthesis that precedes its externalization during programmed cell death [J].
Aussel, C ;
Pelassy, C ;
Breittmayer, JP .
FEBS LETTERS, 1998, 431 (02) :195-199
[5]   Regulation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae [J].
Carman, GM ;
Zeimetz, GM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (23) :13293-13296
[6]   REGULATION OF LEGUMIN LEVELS IN DEVELOPING PEA-SEEDS UNDER CONDITIONS OF SULFUR DEFICIENCY - RATES OF LEGUMIN SYNTHESIS AND LEVELS OF LEGUMIN MESSENGER-RNA [J].
CHANDLER, PM ;
HIGGINS, TJV ;
RANDALL, PJ ;
SPENCER, D .
PLANT PHYSIOLOGY, 1983, 71 (01) :47-54
[7]  
Choi SB, 1997, MOL CELLS, V7, P58
[8]   ENZYMES OF PHOSPHATIDYLCHOLINE SYNTHESIS IN LEMNA, SOYBEAN, AND CARROT [J].
DATKO, AH ;
MUDD, SH .
PLANT PHYSIOLOGY, 1988, 88 (04) :1338-1348
[9]   ALUMINUM TOLERANCE IN WHEAT (TRITICUM-AESTIVUM L) .2. ALUMINUM-STIMULATED EXCRETION OF MALIC-ACID FROM ROOT APICES [J].
DELHAIZE, E ;
RYAN, PR ;
RANDALL, PJ .
PLANT PHYSIOLOGY, 1993, 103 (03) :695-702
[10]   CHARACTERIZATION OF A PHOSPHATE-ACCUMULATOR MUTANT OF ARABIDOPSIS-THALIANA [J].
DELHAIZE, E ;
RANDALL, PJ .
PLANT PHYSIOLOGY, 1995, 107 (01) :207-213