Robust synthesis in l1:: A globally optimal solution

被引:25
作者
Khammash, M [1 ]
Salapaka, MV
Voorhis, TV
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
l(1); optimal; robustness; uncertainty;
D O I
10.1109/9.964684
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a method to synthesize controllers that achieve globally optimal robust performance within any prespecified tolerance, against structured norm-bounded time-varying and/or nonlinear uncertainty is developed. The performance measure considered is the infinity to infinity induced norm of a system's transfer function. The method developed utilizes linear relaxation techniques to solve the infinite dimensional nonconvex problem via finite dimensional linear programming problems.
引用
收藏
页码:1744 / 1754
页数:11
相关论文
共 25 条
[1]  
[Anonymous], J GLOBAL OPTIM, DOI DOI 10.1007/BF00121304
[2]  
Bazarra M.S., 1993, Nonlinear programming
[3]  
Dahleh M.A., 1995, Control of Uncertain Systems: a Linear Programming Approach
[4]   A NECESSARY AND SUFFICIENT CONDITION FOR ROBUST BIBO STABILITY [J].
DAHLEH, MA ;
OHTA, Y .
SYSTEMS & CONTROL LETTERS, 1988, 11 (04) :271-275
[5]   EXACT CALCULATION OF THE MULTILOOP STABILITY MARGIN [J].
DEGASTON, RRE ;
SAFONOV, MG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) :156-171
[6]   ANALYSIS OF FEEDBACK-SYSTEMS WITH STRUCTURED UNCERTAINTIES [J].
DOYLE, J .
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS, 1982, 129 (06) :242-250
[7]  
Doyle J. C., 1982, Proceedings of the 21st IEEE Conference on Decision & Control, P629
[8]  
Horn R. A., 1986, Matrix analysis
[9]   A new approach to the solution of the l1 control problem:: The scaled-Q method [J].
Khammash, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (02) :180-187
[10]   PERFORMANCE ROBUSTNESS OF DISCRETE-TIME-SYSTEMS WITH STRUCTURED UNCERTAINTY [J].
KHAMMASH, M ;
PEARSON, JB .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (04) :398-412