Complete LQG propagator. II. Asymptotic behavior of the vertex

被引:55
作者
Alesci, Emanuele [1 ,2 ]
Rovelli, Carlo [2 ]
机构
[1] Univ Roma Tre, Dipartimento Fis, I-00146 Rome, Italy
[2] Univ Mediterranee, Ctr Phys Theor Luminy, F-13288 Marseille, France
关键词
D O I
10.1103/PhysRevD.77.044024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In a previous article we have shown that there are difficulties in obtaining the correct graviton propagator from the loop-quantum-gravity dynamics defined by the Barrett-Crane vertex amplitude. Here we show that a vertex amplitude that depends nontrivially on the intertwiners can yield the correct propagator. We give an explicit example of asymptotic behavior of a vertex amplitude that gives the correct full graviton propagator in the large distance limit.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Complete LQG propagator: Difficulties with the barrett-crane vertex [J].
Alesci, Emanuele ;
Rovelli, Carlo .
PHYSICAL REVIEW D, 2007, 76 (10)
[2]  
ALEXANDROV S, ARXIV07053892
[3]   Quantum theory of geometry: III. Non-commutativity of Riemannian structures [J].
Ashtekar, A ;
Corichi, A ;
Zapata, JA .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) :2955-2972
[4]   Background independent quantum giravity: a status report [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) :R53-R152
[5]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[6]   Asymptotics of 10j symbols [J].
Baez, JC ;
Christensen, JD ;
Egan, G .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (24) :6489-6513
[7]   Positivity of spin foam amplitudes [J].
Baez, JC ;
Christensen, JD .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (08) :2291-2305
[8]  
Baez JC, 1999, ADV THEOR MATH PHYS, V3, P815
[9]   Quantum tetrahedra and simplicial spin networks [J].
Barbieri, A .
NUCLEAR PHYSICS B, 1998, 518 (03) :714-728
[10]  
Barrett J W., 1999, Adv. Theor. Math. Phys., V3, P209