Subdiffraction-Limit Study of Kaede Diffusion and Spatial Distribution in Live Escherichia coli

被引:61
作者
Bakshi, Somenath [1 ]
Bratton, Benjamin P. [1 ]
Weisshaar, James C. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
[2] Univ Wisconsin, Mol Biophys Program, Madison, WI USA
基金
美国国家卫生研究院;
关键词
SINGLE-PARTICLE TRACKING; PROTEIN DIFFUSION; CYTOPLASM; MOBILITY; MICROSCOPY; PHOTOCONVERSION; MEMBRANE; DNA;
D O I
10.1016/j.bpj.2011.10.013
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Photoactivation localization microscopy (PALM) is used to study the spatial distribution and diffusion of single copies of the protein Kaede in the cytoplasm of live Escherichia colt under moderate growth conditions (67 min doubling time). The spatial distribution of Kaede is uniform within the cytoplasm. The cytoplasmic radius of 380 +/- 30 nm varies lithe from cell to cell. Single-particle tracking using 4 ms exposure times reveals negatively curved plots of mean-square displacement versus time. A detailed comparison with Monte Carlo simulations in a spherocylindrical volume shows that the curvature can be quantitatively understood in terms of free diffusion within a confining volume. The mean diffusion coefficient across cells IS <D-Kaede> = 7.3 +/- 1.1 mu m(2).s(-1), consistent with a homotetrameric form of Kaede. The distribution of squared displacements along the long axis for individual Kaede molecules is consistent with homogeneous diffusion. However, for longer cells, a spatial map of one-step estimates of the diffusion coefficient along x suggests that diffusion is similar to 20-40% faster within nucleoids than in the ribosome-rich region lying between nucleoid lobes at the cell mid-plane. Fluorescence recovery after photobleaching yielded <D-FRAP> = 8.3 +/- 1.6 mu m(2).s(-1), in agreement with the single-particle tracking results.
引用
收藏
页码:2535 / 2544
页数:10
相关论文
共 38 条
[1]  
ANDERSON CM, 1992, J CELL SCI, V101, P415
[2]   An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein [J].
Ando, R ;
Hama, H ;
Yamamoto-Hino, M ;
Mizuno, H ;
Miyawaki, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) :12651-12656
[3]   Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion [J].
Ando, Tadashi ;
Skolnick, Jeffrey .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (43) :18457-18462
[4]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[5]   A note on confined diffusion [J].
Bickel, Thomas .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (01) :24-32
[6]   Single-Molecule and Superresolution Imaging in Live Bacteria Cells [J].
Biteen, Julie S. ;
Moerner, W. E. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2010, 2 (03) :a000448
[7]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[8]   Characterization of the photoconversion on reaction of the fluorescent protein kaede on the single-molecule level [J].
Dittrich, PS ;
Schäfer, SP ;
Schwille, P .
BIOPHYSICAL JOURNAL, 2005, 89 (05) :3446-3455
[9]   Protein mobility in the cytoplasm of Escherichia coli [J].
Elowitz, MB ;
Surette, MG ;
Wolf, PE ;
Stock, JB ;
Leibler, S .
JOURNAL OF BACTERIOLOGY, 1999, 181 (01) :197-203
[10]   Single-molecule investigations of the stringent response machinery in living bacterial cells [J].
English, Brian P. ;
Hauryliuk, Vasili ;
Sanamrad, Arash ;
Tankov, Stoyan ;
Dekker, Nynke H. ;
Elf, Johan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (31) :E365-E373