A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells

被引:58
作者
Benfenati, Valentina [1 ]
Toffanin, Stefano [1 ]
Capelli, Raffaella [1 ]
Camassa, Laura M. A. [2 ]
Ferroni, Stefano [3 ]
Kaplan, David L. [4 ]
Omenetto, Fiorenzo G. [4 ]
Muccini, Michele [1 ]
Zamboni, Roberto [1 ]
机构
[1] CNR, ISMN, I-40129 Bologna, Italy
[2] Univ Oslo, Ctr Mol Biol & Neurosci, NO-0317 Oslo, Norway
[3] Univ Bologna, Dept Human & Gen Physiol, I-40127 Bologna, Italy
[4] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
关键词
Silk platform; Astrocytes; Biocompatibility; Patch clamp; Potassium channels; Guanosine; RECTIFYING K+ CURRENTS; CENTRAL-NERVOUS-SYSTEM; GLIAL-CELLS; HIPPOCAMPAL-NEURONS; CORTICAL ASTROCYTES; ADENOSINE RELEASE; KIR4.1; CHANNELS; ION CHANNELS; IN-VITRO; POTASSIUM;
D O I
10.1016/j.biomaterials.2010.07.013
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Astroglial cell survival and ion channel activity are relevant molecular targets for the mechanistic study of neural cell interactions with biomaterials and/or electronic interfaces. Astrogliosis is the most typical reaction to in vivo brain implants and needs to be avoided by developing biomaterials that preserve astroglial cell physiological function. This cellular phenomenon is characterized by a proliferative state and altered expression of astroglial potassium (K(+)) channels. Silk is a natural polymer with potential for new biomedical applications due to its ability to support in vitro growth and differentiation of many cell types. We report on silk interactions with cultured neocortical astroglial cells. Astrocytes survival is similar when plated on silk-coated glass and on poly-D-lysine (PDL), a well known polyionic substrate used to promote astroglial cell adhesion to glass surfaces. Comparative analyses of whole-cell patch-clamp experiments reveal that silk- and PDL-coated cells display depolarized resting membrane potentials (-40 mV), very high input resistance, and low specific conductance, with values similar to those of undifferentiated glial cells. Analysis of K(+) channel conductance reveals that silk-astrocytes express large outwardly delayed rectifying K(+) current (K(DR)). The magnitude of KDR in PDL- and silk-coated astrocytes is similar, indicating that silk does not alter the resting K(+) current. We also demonstrate that guanosine- (GUO) embedded silk enables the direct modulation of astroglial K(+) conductance in vitro. Astrocytes plated on GUO-embedded silk are more hyperpolarized and express inward rectifying K(+) conductance (K(ir)). The K(+) inward current increases and this is paralleled by upregulation and membrane polarization of K(ir)4.1 protein signal. Collectively these results indicate that silk is a suitable biomaterial platform for the in vitro studies of astroglial ion channel responses and related physiology. (c) 2010 Elsevier Ltd. Al! rights reserved.
引用
收藏
页码:7883 / 7891
页数:9
相关论文
共 46 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   WATER TRANSPORT BETWEEN CNS COMPARTMENTS: FUNCTIONAL AND MOLECULAR INTERACTIONS BETWEEN AQUAPORINS AND ION CHANNELS [J].
Benfenati, V. ;
Ferroni, S. .
NEUROSCIENCE, 2010, 168 (04) :926-940
[3]   Guanosine promotes the up-regulation of inward rectifier potassium current mediated by Kir4.1 in cultured rat cortical astrocytes [J].
Benfenati, Valentina ;
Caprini, Marco ;
Nobile, Mario ;
Rapisarda, Carmela ;
Ferroni, Stefano .
JOURNAL OF NEUROCHEMISTRY, 2006, 98 (02) :430-445
[4]   Therapeutic epilepsy research: From pharmacological rationale to focal adenosine augmentation [J].
Boison, Detlev ;
Stewart, Kerry-Ann .
BIOCHEMICAL PHARMACOLOGY, 2009, 78 (12) :1428-1437
[5]   Differential inhibition of glial K+ currents by 4-AP [J].
Bordey, A ;
Sontheimer, H .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (06) :3476-3487
[6]   Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ [J].
Bordey, A ;
Hablitz, JJ ;
Sontheimer, H .
NEUROREPORT, 2000, 11 (14) :3151-3155
[7]   COEXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN AND VIMENTIN IN REACTIVE ASTROCYTES FOLLOWING BRAIN INJURY IN RATS [J].
CALVO, JL ;
CARBONELL, AL ;
BOYA, J .
BRAIN RESEARCH, 1991, 566 (1-2) :333-336
[8]   Pathological Potential of Astroglia [J].
Chvatal, A. ;
Anderova, M. ;
Neprasova, H. ;
Prajerova, I. ;
Benesova, J. ;
Butenko, O. ;
Verkhratsky, A. .
PHYSIOLOGICAL RESEARCH, 2008, 57 :S101-S110
[9]  
D'Ambrosio R, 1999, J NEUROSCI, V19, P8152
[10]   2 DISTINCT INWARDLY RECTIFYING CONDUCTANCES ARE EXPRESSED IN LONG-TERM DIBUTYRYL-CYCLIC-AMP TREATED RAT CULTURED CORTICAL ASTROCYTES [J].
FERRONI, S ;
MARCHINI, C ;
SCHUBERT, P ;
RAPISARDA, C .
FEBS LETTERS, 1995, 367 (03) :319-325