Stem and progenitor cell-based therapy of the human central nervous system

被引:275
作者
Goldman, S
机构
[1] Univ Rochester, Dept Neurol, Div Cell & Gene Therapy, Rochester, NY 14642 USA
[2] Univ Rochester, Dept Neurosurg, Rochester, NY 14642 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nbt1119
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Multipotent neural stem cells, capable of giving rise to both neurons and glia, line the cerebral ventricles of all adult animals, including humans. In addition, distinct populations of nominally glial progenitor cells, which also have the capacity to generate several cell types, are dispersed throughout the subcortical white matter and cortex. A number of approaches have evolved for using neural progenitor cells in cell therapy. Four strategies are especially attractive for clinical translation: first, transplantation of oligodendrocyte progenitor cells as a means of treating the disorders of myelin; second, transplantation of phenotypically restricted neuronal progenitor cells to treat diseases of discrete loss of a single neuronal phenotype, such as Parkinson disease; third, implantation of mixed progenitor pools to treat diseases characterized by the loss of several discrete phenotypes, such as spinal cord injury; and fourth, mobilization of endogenous neural progenitor cells to restore neurons lost as a result of neurodegenerative diseases, in particular Huntington disease. Together, these may present the most compelling strategies and near-term disease targets for cell-based neurological therapy.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 147 条
[1]  
Åberg MAI, 2000, J NEUROSCI, V20, P2896
[2]  
AHMED S, 1995, J NEUROSCI, V15, P5765
[3]   Neurogenesis in adult subventricular zone [J].
Alvarez-Buylla, A ;
García-Verdugo, JM .
JOURNAL OF NEUROSCIENCE, 2002, 22 (03) :629-634
[4]   Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity [J].
Arber, S ;
Han, B ;
Mendelsohn, M ;
Smith, M ;
Jessell, TM ;
Sockanathan, S .
NEURON, 1999, 23 (04) :659-674
[5]   Isolation of multipotent neural precursors residing in the cortex of the adult human brain [J].
Arsenijevic, Y ;
Villemure, JG ;
Brunet, JF ;
Bloch, JJ ;
Déglon, N ;
Kostic, C ;
Zurn, A ;
Aebischer, P .
EXPERIMENTAL NEUROLOGY, 2001, 170 (01) :48-62
[6]   Neuronal replacement from endogenous precursors in the adult brain after stroke [J].
Arvidsson, A ;
Collin, T ;
Kirik, D ;
Kokaia, Z ;
Lindvall, O .
NATURE MEDICINE, 2002, 8 (09) :963-970
[7]   Emerging concepts in periventricular white matter injury [J].
Back, SA ;
Rivkees, SA .
SEMINARS IN PERINATOLOGY, 2004, 28 (06) :405-414
[8]   Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons [J].
Belachew, S ;
Chittajallu, R ;
Aguirre, AA ;
Yuan, XQ ;
Kirby, M ;
Anderson, S ;
Gallo, V .
JOURNAL OF CELL BIOLOGY, 2003, 161 (01) :169-186
[9]   Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain [J].
Benraiss, A ;
Chmielnicki, E ;
Lerner, K ;
Roh, D ;
Goldman, SA .
JOURNAL OF NEUROSCIENCE, 2001, 21 (17) :6718-6731
[10]   Cell replacement therapies for central nervous system disorders [J].
Björklund, A ;
Lindvall, O .
NATURE NEUROSCIENCE, 2000, 3 (06) :537-544