Heat-killed Brucella abortus induces TNF and IL-12p40 by distinct MyD88-dependent pathways:: TNF, unlike IL-12p40 secretion, is toll-like receptor 2 dependent

被引:61
作者
Huang, LY
Aliberti, J
Leifer, CA
Segal, DM
Sher, A
Golenbock, DT
Golding, B
机构
[1] US FDA, Ctr Biol Evaluat & Res, Div Hematol, Lab Plasma Derivat, Bethesda, MD 20892 USA
[2] NIAID, Parasit Dis Lab, NIH, Bethesda, MD 20892 USA
[3] NCI, Expt Immunol Branch, NIH, Bethesda, MD 20892 USA
[4] Univ Massachusetts, Sch Med, Dept Med, Worcester, MA 01605 USA
关键词
D O I
10.4049/jimmunol.171.3.1441
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Cattle and humans are susceptible to infection with the Gram-negative intracellular bacterium Brucella abortus. Heat-killed B. abortus (HKBA) is a strong Th1 adjuvant and carrier. Previously, we have demonstrated that dendritic cells produce IL-12 in response to HKBA stimulation. In the present study, we use knockout mice and in vitro reconstitution assays to examine the contribution of signaling by Toll-like receptors (TLRs) and their immediate downstream signaling initiator, myeloid differentiation protein MyD88, in the activation following stimulation by HKBA. Our results show that HKBA-mediated induction of IL-12p40 and TNF is dependent on the adapter molecule MyD88. To identify the TLR involved in HKBA recognition, we examined HKBA responses in TLR2- and TLR4-deficient animals. TNF responses to HKBA were TLR4 independent; however, the response in TLR2-deficient mice was significantly delayed and reduced, although not completely abolished. Studies using Chinese hamster ovary/CD14 reporter cell lines stably transfected with either human TLR2 or human TLR4 confirmed the results seen with knockout mice, namely TLR2, but not TLR4, can mediate cellular activation by HKBA. In addition, human embryonic kidney 293 cells, which do not respond to HKBA, were made responsive by transfecting TLR2, but not TLR4 or TLR9. Taken together, our data demonstrate that MyD88-dependent pathways are crucial for activation by HKBA and that TLR2 plays a role in TNF, but not IL-12p40 pathways activated by this microbial product.
引用
收藏
页码:1441 / 1446
页数:6
相关论文
共 47 条
[1]   Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function [J].
Adachi, O ;
Kawai, T ;
Takeda, K ;
Matsumoto, M ;
Tsutsui, H ;
Sakagami, M ;
Nakanishi, K ;
Akira, S .
IMMUNITY, 1998, 9 (01) :143-150
[2]   Toll-like receptors in the induction of the innate immune response [J].
Aderem, A ;
Ulevitch, RJ .
NATURE, 2000, 406 (6797) :782-787
[3]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[4]   CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells [J].
Aliberti, J ;
Sousa, CRE ;
Schito, M ;
Hieny, S ;
Wells, T ;
Huffnagle, GB ;
Sher, A .
NATURE IMMUNOLOGY, 2000, 1 (01) :83-87
[5]   Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition [J].
Bauer, S ;
Kirschning, CJ ;
Häcker, H ;
Redecke, V ;
Hausmann, S ;
Akira, S ;
Wagner, H ;
Lipford, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9237-9242
[6]   Cooperation of toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein:: Role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling [J].
Bulut, Y ;
Faure, E ;
Thomas, L ;
Equils, O ;
Arditi, M .
JOURNAL OF IMMUNOLOGY, 2001, 167 (02) :987-994
[7]  
Delude RL, 1998, J IMMUNOL, V161, P3001
[8]  
FINKELMAN FD, 1988, J IMMUNOL, V140, P1022
[9]   Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction [J].
Fitzgerald, KA ;
Palsson-McDermott, EM ;
Bowie, AG ;
Jefferies, CA ;
Mansell, AS ;
Brady, G ;
Brint, E ;
Dunne, A ;
Gray, P ;
Harte, MT ;
McMurray, D ;
Smith, DE ;
Sims, JE ;
Bird, TA ;
O'Neill, LAJ .
NATURE, 2001, 413 (6851) :78-83
[10]   Lipopolysaccharides from Legionella and Rhizobium stimulate mouse bone marrow granulocytes via Toll-like receptor 2 [J].
Girard, R ;
Pedron, T ;
Uematsu, S ;
Balloy, V ;
Chignard, M ;
Akira, S ;
Chaby, R .
JOURNAL OF CELL SCIENCE, 2003, 116 (02) :293-302