Polypyrimidine track-binding protein binding downstream of caspase-2 alternative exon 9 represses its inclusion

被引:55
作者
Côté, J
Dupuis, S
Wu, JY
机构
[1] Washington Univ, Sch Med, Dept Pediat, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA
关键词
D O I
10.1074/jbc.M008924200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3' portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis, We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3' acceptor site that engages in nonproductive commitment complex interactions with the 5' splice site of exon 9, This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3' acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3' splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.
引用
收藏
页码:8535 / 8543
页数:9
相关论文
共 70 条
  • [1] Biochemistry and regulation of pre-mRNA splicing
    Adams, MD
    Rudner, DZ
    Rio, DC
    [J]. CURRENT OPINION IN CELL BIOLOGY, 1996, 8 (03) : 331 - 339
  • [2] AMENDT BA, 1995, MOL CELL BIOL, V15, P4606
  • [3] Ashiya M, 1997, RNA, V3, P996
  • [4] Defects in regulation of apoptosis in caspase-2-deficient mice
    Bergeron, L
    Perez, GI
    Macdonald, G
    Shi, LF
    Sun, Y
    Jurisicova, A
    Varmuza, S
    Latham, KE
    Flaws, JA
    Salter, JCM
    Hara, H
    Moskowitz, MA
    Li, E
    Greenberg, A
    Tilly, JL
    Yuan, JY
    [J]. GENES & DEVELOPMENT, 1998, 12 (09) : 1304 - 1314
  • [5] BLACK DL, 1995, RNA, V1, P763
  • [6] Modulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization
    Blanchette, M
    Chabot, B
    [J]. EMBO JOURNAL, 1999, 18 (07) : 1939 - 1952
  • [7] Blanchette M, 1997, RNA, V3, P405
  • [8] Bourgeois CF, 1999, MOL CELL BIOL, V19, P7347
  • [9] A NOVEL BIPARTITE SPLICING ENHANCER MODULATES THE DIFFERENTIAL PROCESSING OF THE HUMAN FIBRONECTIN EDA EXON
    CAPUTI, M
    CASARI, G
    GUENZI, S
    TAGLIABUE, R
    SIDOLI, A
    MELO, CA
    BARALLE, FE
    [J]. NUCLEIC ACIDS RESEARCH, 1994, 22 (06) : 1018 - 1022
  • [10] An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing
    Carstens, RP
    McKeehan, WL
    Garcia-Blanco, MA
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (04) : 2205 - 2217