Using remote sensing data to develop seasonal outlooks for Arctic regional sea-ice minimum extent

被引:34
作者
Drobot, Sheldon D. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn, Colorado Ctr Astrodynam Res, Boulder, CO 80309 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
remote sensing; forecasting; sea-ice; Arctic;
D O I
10.1016/j.rse.2007.03.024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper discusses the development of simple multiple linear regression (MLR) models for developing seasonal forecasts of the annual minimum sea-ice extent in the Beaufort/Chukchi Seas, the Laptev/East Siberian Seas, the Kara/Barents Seas, and the Canadian Arctic Archipelago regions. The potential predictor data are based on mean monthly weighted indices of sea-ice concentration, multiyear sea-ice concentration, surface skin temperature, surface albedo, and downwelling longwave radiation flux at the surface. Predictions are developed based on data available in March (spring forecast), to coincide with the National American Ice Service's annual outlooks, and based on data available in June (summer forecast), which would provide a seasonal revision. The final regression equations retain one to three predictors, and each of the MLR models is superior to climatology. The r(2) for the MLR models range from a low of 0.44 (for the spring forecast in the Canadian Arctic Archipelago) to a high of 0.80 (for the summer forecast in the BeauforL/Chukchi Seas). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 147
页数:12
相关论文
共 46 条
[1]  
[Anonymous], POLAR GEOGR
[2]  
Arctic Climate Impact Assessment, 2004, IMP WARM ARCT ARCT C
[3]   Canadian cryospheric response to an anomalous warm summer: A synthesis of the climate change action fund project "The state of the arctic cryosphere during the extreme warm summer of 1998" [J].
Atkinson, D. E. ;
Brown, R. ;
Alt, B. ;
Agnew, T. ;
Bourgeois, J. ;
Burgess, M. ;
Duguay, C. ;
Henry, G. ;
Jeffers, S. ;
Koerner, R. ;
Lewkowicz, A. G. ;
McCourt, S. ;
Melling, H. ;
Sharp, M. ;
Smith, S. ;
Walker, A. ;
Wilson, K. ;
Wolfe, S. ;
Woo, M. -k. ;
Young, K. L. .
ATMOSPHERE-OCEAN, 2006, 44 (04) :347-375
[4]  
Belchansky GI, 2004, J CLIMATE, V17, P67, DOI 10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO
[5]  
2
[6]   SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE [J].
BREIMAN, L ;
SPECTOR, P .
INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) :291-319
[7]  
Brigham Lawson W., 2004, ARCTIC MARINE TRANSP
[8]  
Cavalieri D. J., 1991, Journal of Geophysical Research, V96, p21, 989
[9]   Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets [J].
Cavalieri, DJ ;
Parkinson, CL ;
Gloersen, P ;
Comiso, JC ;
Zwally, HJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1999, 104 (C7) :15803-15814
[10]   30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability [J].
Cavalieri, DJ ;
Parkinson, CL ;
Vinnikov, KY .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (18) :CRY4-1