Enhanced Photocatalytic and Photoelectrochemical Activity in the Ternary Hybrid of CdS/TiO2/WO3 through the Cascadal Electron Transfer

被引:242
作者
Kim, Hyoung-il [1 ]
Kim, Jungwon [1 ]
Kim, Wooyul [1 ]
Choi, Wonyong [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Sch Environm Sci & Engn, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
VISIBLE-LIGHT-DRIVEN; HYDROGEN EVOLUTION; FILM ELECTRODES; CADMIUM-SULFIDE; TIO2; NANOTUBES; CDS; PERFORMANCE; SEMICONDUCTOR; PHOTOSENSITIZATION; PHOTOCORROSION;
D O I
10.1021/jp1122823
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The composite of different semiconductor nanoparticles may facilitate the charge separation and transfer because the difference in the band edge positions creates the potential gradient at the composite interface. For this purpose, the CdS-TiO2-WO3 ternary hybrid was successfully synthesized and characterized for the structural, optical, and morphological properties by X-ray diffraction, diffuse reflectance UV/visible absorption spectroscopy, high-resolution transmission electron micrography, and energy-dispersive X-ray analysis. The photocatalytic activity was tested by monitoring the photoreduction of polyoxometalate (POM: PMo12O403-) spectrophotometrically. The photo electrochemical (PEC) property of the ternary hybrid electrode was also characterized by the linear sweep voltammetry, and the incident photon-to-current conversion efficiency was measured as a function of wavelength. The results of both the POM reduction and photocurrent tests indicated that the photocatalytic and PEC activities of the CdS-TiO2-WO3 ternary hybrid are much higher than those of bare CdS and any binary hybrids. The enhanced activity could be attributed to the cascadal electron transfer from CdS to TiO2 to WO3 through the interfacial potential gradient in the ternary hybrid conduction bands. Such a cascadal electron transfer in the hybrid structure facilitated the charge separation and retarded the charge pair recombination. As a result, the CdS-TiO2-WO3 showed the maximum photocurrent density of 1.6 inA/cm(2) (at 0V(Ag/AgCl)) under visible light irradiation (lambda > 495 nm), which is about 5 times larger than that of bare CdS and about 2-3 times larger than that of binary composites. The enhanced electron transfer within the CdS-TiO2-WO3 composite was also confirmed by the electrochemical impedance spectroscopy.
引用
收藏
页码:9797 / 9805
页数:9
相关论文
共 48 条
[1]   Pristine simple oxides as visible light driven photocatalysts: Highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide [J].
Abe, Ryu ;
Takami, Hiticishi ;
Murakami, Naoya ;
Ohtani, Bunsho .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (25) :7780-+
[2]   Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures [J].
Baker, David R. ;
Kamat, Prashant V. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (05) :805-811
[3]   Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS [J].
Banerjee, Subarna ;
Mohapatra, Susanta K. ;
Das, Prajna P. ;
Misra, Mano .
CHEMISTRY OF MATERIALS, 2008, 20 (21) :6784-6791
[5]  
Cao A., 2009, ADV MATER, V21, P1
[6]   Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting [J].
Cole, Brian ;
Marsen, Bjorn ;
Miller, Eric ;
Yan, Yanfa ;
To, Bobby ;
Jones, Kim ;
Al-Jassim, Mowafak .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (13) :5213-5220
[7]   Boosting fuel cell performance with a semiconductor photocatalyst:: TiO2/Pt-Ru hybrid catalyst for methanol oxidation [J].
Drew, K ;
Girishkumar, G ;
Vinodgopal, K ;
Kamat, PV .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (24) :11851-11857
[8]   A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy [J].
Fermín, DJ ;
Ponomarev, EA ;
Peter, LM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 473 (1-2) :192-203
[9]   Photodeposition of CdS Quantum Dots on TiO2: Preparation, Characterization, and Reaction Mechanism [J].
Fujii, Masashi ;
Nagasuna, Kazuki ;
Fujishima, Musashi ;
Akita, Tomoki ;
Tada, Hiroaki .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (38) :16711-16716
[10]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344