Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis

被引:62
作者
Yamaguchi, K [1 ]
Uzzo, RG [1 ]
Pimkina, J [1 ]
Makhov, P [1 ]
Golovine, K [1 ]
Crispen, P [1 ]
Kolenko, VM [1 ]
机构
[1] Fox Chase Canc Ctr, Dept Urol Oncol, Philadelphia, PA 19111 USA
关键词
selenium; TRAIL; apoptosis; prostate; cancer;
D O I
10.1038/sj.onc.1208742
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytotoxic agent that preferentially induces apoptosis in a variety of human cancer cells. Unfortunately, some tumor cells remain resistant to TRAIL. Therefore, agents that sensitize malignant cells to TRAIL-mediated cell death might be of particular importance for the development of novel antitumor therapeutic regimens. Recent studies establish a critical role of selenium in prostate cancer prevention in vitro and in vivo. Here, we demonstrate that concomitant administration of TRAIL and methylseleninic acid (MSA) produces synergistic effects on the induction of apoptosis in androgen-dependent LNCaP and androgen-independent DU-145 prostate cancer cells. MSA rapidly and specifically downregulates expression of the cellular FLICE inhibitory protein, a negative regulator of death receptor signaling. In addition, we demonstrate that the synergistic effects of MSA and TRAIL result from the activation of the mitochondrial pathway-mediated amplification loop. Addition of MSA effectively blocked TRAIL-mediated BAD phosphorylation at Ser112 and Ser136 in DU-145 cells and was accompanied by induction of the mitochondrial permeability transition and release of apoptogenic cytochrome c and Smac/DIABLO proteins from the mitochondria and into the cytosol. These results suggest that selenium-based dietary compounds may help to overcome resistance to TRAIL-mediated apoptosis in prostate cancer cells.
引用
收藏
页码:5868 / 5877
页数:10
相关论文
共 57 条
[1]   Death receptors: Signaling and modulation [J].
Ashkenazi, A ;
Dixit, VM .
SCIENCE, 1998, 281 (5381) :1305-1308
[2]   Modulation of life and death by the TNF receptor superfamily [J].
Baker, SJ ;
Reddy, EP .
ONCOGENE, 1998, 17 (25) :3261-3270
[3]   SELF-ASSOCIATION OF THE DEATH DOMAINS OF THE P55 TUMOR-NECROSIS-FACTOR (TNF) RECEPTOR AND FAS/APO1 PROMPTS SIGNALING FOR TNF AND FAS/APO1 EFFECTS [J].
BOLDIN, MP ;
METT, IL ;
VARFOLOMEEV, EE ;
CHUMAKOV, I ;
SHEMERAVNI, Y ;
CAMONIS, JH ;
WALLACH, D .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (01) :387-391
[4]   BAD/BCL-xL heterodimerization leads to bypass of G0/G1 arrest [J].
Chattopadhyay, A ;
Chiang, CW ;
Yang, E .
ONCOGENE, 2001, 20 (33) :4507-4518
[5]   Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-κB pathway [J].
Chaudhary, PM ;
Eby, M ;
Jasmin, A ;
Bookwalter, A ;
Murray, J ;
Hood, L .
IMMUNITY, 1997, 7 (06) :821-830
[6]   Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis [J].
Chawla-Sarkar, M ;
Bae, SI ;
Reu, FJ ;
Jacobs, BS ;
Lindner, DJ ;
Borden, EC .
CELL DEATH AND DIFFERENTIATION, 2004, 11 (08) :915-923
[7]   Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer [J].
Chen, XF ;
Thakkar, H ;
Tyan, F ;
Gim, S ;
Robinson, H ;
Lee, C ;
Pandey, SK ;
Nwokorie, C ;
Onwudiwe, N ;
Srivastava, RK .
ONCOGENE, 2001, 20 (42) :6073-6083
[8]   Protein phosphatase 2A activates the proapoptotic function of BAD in interleukin-3-dependent lymphoid cells by a mechanism requiring 14-3-3 dissociation [J].
Chiang, CW ;
Harris, G ;
Ellig, C ;
Masters, SC ;
Subramanian, R ;
Shenolikar, S ;
Wadzinski, BE ;
Yang, E .
BLOOD, 2001, 97 (05) :1289-1297
[9]  
CHINNAIYAN AM, 1995, CELL, V81, P512
[10]   14-3-3 proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation [J].
Datta, SR ;
Katsov, A ;
Hu, L ;
Petros, A ;
Fesik, SW ;
Yaffe, MB ;
Greenberg, ME .
MOLECULAR CELL, 2000, 6 (01) :41-51