Uranium partition coefficients (Kd) in forest surface soil reveal long equilibrium times and vary by site and soil size fraction

被引:9
作者
Whicker, Jeffrey J.
Pinder, John E., III
Ibrahim, Shawki A.
Stone, James M.
Breshears, David D.
Baker, Kristine N.
机构
[1] Los Alamos Natl Lab, Radiat Protect Div, Los Alamos, NM 87544 USA
[2] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA
[3] Texas Christian Univ, Ft Worth, TX 76109 USA
[4] Univ Arizona, Sch Nat Resources, Inst Study Planet Earth, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
来源
HEALTH PHYSICS | 2007年 / 93卷 / 01期
关键词
uranium; depleted uranium; dose assessment; risk analysis;
D O I
10.1097/01.HP.0000258924.55225.cd
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The environmental mobility of newly deposited radionuclides in surface soil is driven by complex biogeochemical relationships, which have significant impacts on transport pathways. The partition coefficient (Kd) is useful for characterizing the soil-solution exchange kinetics and is an important factor for predicting relative amounts of a radionuclide transported to groundwater compared to that remaining on soil surfaces and thus available for transport through erosion processes. Measurements of K-d for U-238 are particularly useful because of the extensive Use Of 238U in military applications and associated testing, such as done at Los Alamos National Laboratory (LANL). Site-specific measurements of K-d for 238U are needed because K-d is highly dependent on local soil conditions and also on the fine soil fraction because 238U concentrates onto smaller soil particles, such as clays and soil organic material, which are most susceptible to wind erosion and contribute to inhalation exposure in off-site populations. We measured Kd for uranium in soils from two neighboring semiarid forest sites at LANL using a U.S. Environmental Protection Agency (EPA)-based protocol for both whole soil and the fine soil fraction (diameters <45 mu m). The 7-d K-d values, which are those specified in the EPA protocol, ranged from 276-508 mL g(-1) for whole soil and from 615-2249 mL g(-1) for the fine soil fraction. Unexpectedly, the 30-d Kd values, measured to test for soil-solution exchange equilibrium, were more than two times the 7-d values. Rates of adsorption of U-238 to soil from solution were derived using a 2-component (FAST and SLOW) exponential model. We found significant differences in Kd values among LANL sampling sites, between whole and fine soils, and between 7-d and 30-d K-d measurements. The significant variation in soil-solution exchange kinetics among the soils and soil sizes promotes the use of site-specific data for estimates of environmental transport rates and suggests possible differences in desorption rates from soil to solution (e.g., into groundwater or lung fluid). We also explore potential relationships between wind erosion, soil characteristics, and Kd values. Combined, our results highlight the need for a better mechanistic understanding of soil-solution partitioning kinetics for accurate risk assessment.
引用
收藏
页码:36 / 46
页数:11
相关论文
共 32 条
[1]  
[Anonymous], 1999, ENV PROT AGENCY
[2]  
[Anonymous], FLORA NEW MEXICO
[3]  
Bagnold R. A., 1941, PHYS WIND BLOWN SAND
[4]  
BOWEN BM, 1990, LA117535MS LOS AL NA
[5]  
BRESHEARS DD, 1993, ECOL APPL, V3, P590, DOI 10.2307/1942092
[6]   Wind and water erosion and transport in semi-arid shrubland, grassland and forest ecosystems: Quantifying dominance of horizontal wind-driven transport [J].
Breshears, DD ;
Whicker, JJ ;
Johansen, MP ;
Pinder, JE .
EARTH SURFACE PROCESSES AND LANDFORMS, 2003, 28 (11) :1189-1209
[7]  
CASACELI CA, 2006, THESIS COLORADO STAT
[8]  
Cheng JJ., 2001, User's manual for RESRAD version 6, DOI [DOI 10.2172/785378, 10.2172/785378]
[9]  
EDISON AF, 1989, RADIAT PROT DOSIM, V26, P69
[10]   THE EFFECT OF SOLUBILITY ON INHALED URANIUM COMPOUND CLEARANCE - A REVIEW [J].
EIDSON, AF .
HEALTH PHYSICS, 1994, 67 (01) :1-14