Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli

被引:237
作者
Thomas, JD
Daniel, RA
Errington, J
Robinson, C [1 ]
机构
[1] Univ Warwick, Dept Biol Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Oxford, Sir William Dunn Sch Pathol, Oxford OX1 3RE, England
关键词
D O I
10.1046/j.1365-2958.2001.02253.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.
引用
收藏
页码:47 / 53
页数:7
相关论文
共 25 条
[1]  
Andersen JB, 1998, APPL ENVIRON MICROB, V64, P2240
[2]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[3]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[4]   Subunit interactions in the twin-arginine translocase complex of Escherichia coli [J].
Bolhuis, A ;
Bogsch, EG ;
Robinson, C .
FEBS LETTERS, 2000, 472 (01) :88-92
[5]   LATERAL DIFFUSION OF PROTEINS IN THE PERIPLASM OF ESCHERICHIA-COLI [J].
BRASS, JM ;
HIGGINS, CF ;
FOLEY, M ;
RUGMAN, PA ;
BIRMINGHAM, J ;
GARLAND, PB .
JOURNAL OF BACTERIOLOGY, 1986, 165 (03) :787-795
[6]   A folded protein can be transported across the chloroplast envelope and thylakoid membranes [J].
Clark, SA ;
Theg, SM .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (05) :923-934
[7]   FACS-optimized mutants of the green fluorescent protein (GFP) [J].
Cormack, BP ;
Valdivia, RH ;
Falkow, S .
GENE, 1996, 173 (01) :33-38
[8]   Competition between Sec- and TAT-dependent protein translocation in Escherichia coli [J].
Cristóbal, S ;
de Gier, JW ;
Nielsen, H ;
von Heijne, G .
EMBO JOURNAL, 1999, 18 (11) :2982-2990
[9]   Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane [J].
Dalbey, RE ;
Robinson, C .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (01) :17-22
[10]   Protein mobility in the cytoplasm of Escherichia coli [J].
Elowitz, MB ;
Surette, MG ;
Wolf, PE ;
Stock, JB ;
Leibler, S .
JOURNAL OF BACTERIOLOGY, 1999, 181 (01) :197-203