Constructing nonautonomous differential equations from experimental time series

被引:43
作者
Bezruchko, BP [1 ]
Smirnov, DA
机构
[1] Russian Acad Sci, Saratov Branch, Inst Radioengn & Elect, 38 Zelyonaya St, Saratov 410019, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Phys, Saratov 410026, Russia
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 01期
关键词
D O I
10.1103/PhysRevE.63.016207
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An approach to constructing model differential equations of harmonically driven systems is proposed. It is a modification of the standard global reconstruction technique: an algebraic polynomial which coefficients depend on time is used for approximation. Efficiency and details of the approach are demonstrated by various numerical and natural examples.
引用
收藏
页数:7
相关论文
共 19 条
[1]  
ANISHCHENKO VS, UNPUB
[2]   FITTING ORDINARY DIFFERENTIAL-EQUATIONS TO CHAOTIC DATA [J].
BAAKE, E ;
BAAKE, M ;
BOCK, HG ;
BRIGGS, KM .
PHYSICAL REVIEW A, 1992, 45 (08) :5524-5529
[3]  
Bezruchko B., 1999, Proceedings of the 7th International Specialist Workshop on Nonlinear Dynamics of Electronic Systems, P65
[4]  
BEZRUCHKO BP, 1999, IZV VYSSH UCHEBN ZAV, V7, P49
[5]  
BEZRUCKHKO BP, 1998, P 5 INT SCH CHAOT OS, P68
[6]   MODELING AND SYNCHRONIZING CHAOTIC SYSTEMS FROM TIME-SERIES DATA [J].
BROWN, R ;
RULKOV, NF ;
TRACY, ER .
PHYSICAL REVIEW E, 1994, 49 (05) :3784-3800
[7]  
CREMERS J, 1987, Z NATURFORSCH A, V42, P797
[8]   PREDICTING CHAOTIC TIME-SERIES [J].
FARMER, JD ;
SIDOROWICH, JJ .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :845-848
[9]   CONSTRUCTION OF PHENOMENOLOGICAL MODELS FROM NUMERICAL SCALAR TIME-SERIES [J].
GOUESBET, G ;
MAQUET, J .
PHYSICA D, 1992, 58 (1-4) :202-215
[10]   GLOBAL VECTOR-FIELD RECONSTRUCTION BY USING A MULTIVARIATE POLYNOMIAL L(2) APPROXIMATION ON NETS [J].
GOUESBET, G ;
LETELLIER, C .
PHYSICAL REVIEW E, 1994, 49 (06) :4955-4972