Impact of mitochondrial ROS production in the pathogenesis of insulin resistance

被引:83
作者
Nishikawa, Takeshi [1 ]
Kukidome, Daisuke [1 ]
Sonoda, Kazuhiro [1 ]
Fujisawa, Kazuo [1 ]
Matsuhisa, Takako [1 ]
Motoshima, Hiroyuki [1 ]
Matsumura, Takeshi [1 ]
Araki, Eiichi [1 ]
机构
[1] Kumamoto Univ, Fac Med & Pharmaceut Sci, Dept Metab Med, Kumamoto 8608556, Japan
基金
日本学术振兴会;
关键词
insulin resistance; tumor necrosis factor-alpha; reactive oxygen species; mitochondria; apoptosis signal-regulating kinase 1;
D O I
10.1016/j.diabres.2007.01.071
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Tumor necrosis factor-alpha (TNF-alpha) inhibits insulin action, in part, by activating c-jun NH2-terminal kinases (JNK). However, the precise mechanisms by which TNF-alpha. activates JNK are unknown. Recently, we confirmed that hyperglycemia increased mitochondrial reactive oxygen species (ROS) production, and which can associate with the pathogenesis of diabetic vascular complications. In addition, apoptosis signal-regulating kinase 1(ASK1) was reported to activate the JNK and p38 signaling pathways and is required for TNF-alpha-induced apoptosis. Here we demonstrate that TNF-a increases mitochondrial ROS production and ASK I activity, and that these TNF-alpha-induced phenomena associate with JNK activation, increase in Ser(307) phosphorylation of IRS-1 and decrease in insulin-stimulated tyrosine phosphorylation of IRS-1, all of which are believed to be the molecular basis of TNF-alpha-induced insulin resistance. We claim that mitochondrial ROS production may be a key factor not only in diabetic vascular complications, but also in the development of type 2 diabetes. This integrating paradigm could provide a new conceptual framework for further research and therapies for the treatment of type 2 diabetes. (c) 2007 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:S161 / S164
页数:4
相关论文
共 22 条
[1]   Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action [J].
Aguirre, V ;
Werner, ED ;
Giraud, J ;
Lee, YH ;
Shoelson, SE ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (02) :1531-1537
[2]   The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307 [J].
Aguirre, V ;
Uchida, T ;
Yenush, L ;
Davis, R ;
White, MF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (12) :9047-9054
[3]   ALTERNATIVE PATHWAY OF INSULIN SIGNALING IN MICE WITH TARGETED DISRUPTION OF THE IRS-1 GENE [J].
ARAKI, E ;
LIPES, MA ;
PATTI, ME ;
BRUNING, JC ;
HAAG, B ;
JOHNSON, RS ;
KAHN, CR .
NATURE, 1994, 372 (6502) :186-190
[4]   Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-α is mediated by ceramide [J].
Corda, S ;
Laplace, C ;
Vicaut, E ;
Duranteau, J .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2001, 24 (06) :762-768
[5]  
GarciaRuiz C, 1997, J BIOL CHEM, V272, P11369
[6]   DIRECT EVIDENCE FOR TUMOR NECROSIS FACTOR-INDUCED MITOCHONDRIAL REACTIVE OXYGEN INTERMEDIATES AND THEIR INVOLVEMENT IN CYTOTOXICITY [J].
GOOSSENS, V ;
GROOTEN, J ;
DEVOS, K ;
FIERS, W .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) :8115-8119
[7]   Reactive oxygen species- and dimerization-induced activation of apoptosis signal-regulating kinase 1 in tumor necrosis factor-α signal transduction [J].
Gotoh, Y ;
Cooper, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (28) :17477-17482
[8]   Insulin signaling is inhibited by micromolar concentrations of H2O2 -: Evidence for a role of H2O2 in tumor necrosis factor α-mediated insulin resistance [J].
Hansen, LL ;
Ikeda, Y ;
Olsen, GS ;
Busch, AK ;
Mosthaf, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (35) :25078-25084
[9]   IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance [J].
Hotamisligil, GS ;
Peraldi, P ;
Budavari, A ;
Ellis, R ;
White, MF ;
Spiegelman, BM .
SCIENCE, 1996, 271 (5249) :665-668
[10]   ADIPOSE EXPRESSION OF TUMOR-NECROSIS-FACTOR-ALPHA - DIRECT ROLE IN OBESITY-LINKED INSULIN RESISTANCE [J].
HOTAMISLIGIL, GS ;
SHARGILL, NS ;
SPIEGELMAN, BM .
SCIENCE, 1993, 259 (5091) :87-91