Gaussian split Ewald: A fast Ewald mesh method for molecular simulation

被引:323
作者
Shan, YB [1 ]
Klepeis, JL [1 ]
Eastwood, MP [1 ]
Dror, RO [1 ]
Shaw, DE [1 ]
机构
[1] DE Shaw Res & Dev, New York, NY 10036 USA
关键词
D O I
10.1063/1.1839571
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Gaussian split Ewald (GSE) is a versatile Ewald mesh method that is fast and accurate when used with both real-space and k-space Poisson solvers. While real-space methods are known to be asymptotically superior to k-space methods in terms of both computational cost and parallelization efficiency, k-space methods such as smooth particle-mesh Ewald (SPME) have thus far remained dominant because they have been more efficient than existing real-space methods for simulations of typical systems in the size range of current practical interest. Real-space GSE, however, is approximately a factor of 2 faster than previously described real-space Ewald methods for the level of force accuracy typically required in biomolecular simulations, and is competitive with leading k-space methods even for systems of moderate size. Alternatively, GSE may be combined with a k-space Poisson solver, providing a conveniently tunable k-space method that performs comparably to SPME. The GSE method follows naturally from a uniform framework that we introduce to concisely describe the differences between existing Ewald mesh methods. (C) 2005 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
[Anonymous], MULTIGRID METHODS
[2]   Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations [J].
Batcho, PF ;
Case, DA ;
Schlick, T .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) :4003-4018
[3]   An iterative PPPM method for simulating Coulombic systems on distributed memory parallel computers [J].
Beckers, JVL ;
Lowe, CP ;
De Leeuw, SW .
MOLECULAR SIMULATION, 1998, 20 (06) :369-383
[4]   GROMACS - A MESSAGE-PASSING PARALLEL MOLECULAR-DYNAMICS IMPLEMENTATION [J].
BERENDSEN, HJC ;
VANDERSPOEL, D ;
VANDRUNEN, R .
COMPUTER PHYSICS COMMUNICATIONS, 1995, 91 (1-3) :43-56
[5]  
BRIGGS AW, 2000, MULTIGRID TUTORIAL
[6]   STRUCTURAL AND ENERGETIC EFFECTS OF TRUNCATING LONG RANGED INTERACTIONS IN IONIC AND POLAR FLUIDS [J].
BROOKS, CL ;
PETTITT, BM ;
KARPLUS, M .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (11) :5897-5908
[7]  
Case D. A., 2002, AMBER7
[8]  
Collatz L., 1960, NUMERICAL TREATMENT
[9]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[10]   How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-mesh algorithm [J].
Deserno, M ;
Holm, C .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (18) :7694-7701