Adsorption and binding of capping molecules for highly luminescent CdSe nanocrystals - DFT simulation studies

被引:15
作者
Chou, Hung-Lung [1 ]
Tseng, Chih-Hsiang [1 ]
Pillai, K. Chandrasekara [1 ]
Hwang, Bing-Joe [1 ,2 ]
Chen, Liang-Yih [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 106, Taiwan
[2] NSRRC, Hsinchu 30076, Taiwan
关键词
SEMICONDUCTOR QUANTUM DOTS; II-VI; SURFACE MODIFICATION; HOLE ACCEPTOR; NANOPARTICLES; PHOTOLUMINESCENCE; GROWTH; TRANSITIONS; EFFICIENCY; EMISSION;
D O I
10.1039/c0nr00569j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
During CdSe nanocrystal growth, loss of surface capping molecules occurs leading to a decrease of photoluminescence (PL) quantum yield. In general, aliphatic capping molecules are applied to passivate the surface of CdSe nanocrystals to modulate the optical properties of the CdSe. In this work, two kinds of alkylamine (n-butylamine (n-BA) and n-hexylamine (n-HA)) and oleic acid (OA) were used to modify the surfaces of the CdSe nanocrystals. From the PL spectra and quantum yield analyses, we observed that the PL emission peak positions of the modified CdSe nanocrystals have blue shifted for all three capping molecules. However, the PL quantum yield of the CdSe nanocrystals increased after introduction of the alkylamine molecules, but decreased with oleic acid. The detailed mechanism was not clear until now. In this study, a density function theory (DFT) simulation was employed to demonstrate binding energy and charge analyses of CdSe with n-BA, n-HA and OA. By comparing the binding energy of the bare CdSe nanocrystals to that of the CdSe with the capping molecules, it was shown that n-BA and n-HA as capping molecules help to increase the charge on Se and decrease it on cadmium of the CdSe.
引用
收藏
页码:2679 / 2684
页数:6
相关论文
共 49 条
[1]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[2]   The effects of chemisorption on the luminescence of CdSe quantum dots [J].
Bullen, C ;
Mulvaney, P .
LANGMUIR, 2006, 22 (07) :3007-3013
[3]  
CAO MY, 2000, J APPL PHYS, V87, P2297
[4]   An oleic acid-capped CdSe quantum-dot sensitized solar cell [J].
Chen, Jing ;
Song, J. L. ;
Sun, X. W. ;
Deng, W. Q. ;
Jiang, C. Y. ;
Lei, W. ;
Huang, J. H. ;
Liu, R. S. .
APPLIED PHYSICS LETTERS, 2009, 94 (15)
[5]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[6]   Density Functional Study of Surface Passivation of Nonpolar Wurtzite CdSe Surfaces [J].
Csik, Istvan ;
Russo, Salvy P. ;
Mulvaney, Paul .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (51) :20413-20417
[7]   Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J].
Donegá, CD ;
Hickey, SG ;
Wuister, SF ;
Vanmaekelbergh, D ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (02) :489-496
[8]   A versatile strategy for quantum dot ligand exchange [J].
Dubois, Fabien ;
Mahler, Benoit ;
Dubertret, Benoit ;
Doris, Eric ;
Mioskowski, Charles .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (03) :482-483
[9]   Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots [J].
Gerion, D ;
Pinaud, F ;
Williams, SC ;
Parak, WJ ;
Zanchet, D ;
Weiss, S ;
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (37) :8861-8871
[10]   Exciton-Trion Transitions in Single CdSe-CdS Core-Shell Nanocrystals [J].
Gomez, Daniel E. ;
van Embden, Joel ;
Mulvaney, Paul ;
Fernee, Mark J. ;
Rubinsztein-Dunlop, Halina .
ACS NANO, 2009, 3 (08) :2281-2287