Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers

被引:567
作者
Gu, Frank [1 ,2 ]
Zhang, Liangfang [2 ]
Teply, Benjamin A. [2 ,3 ]
Mann, Nina [2 ]
Wang, Andrew [1 ,3 ]
Radovic-Moreno, Aleksandar F. [1 ,2 ]
Langer, Robert [1 ,2 ]
Farokhzad, Omid C. [1 ,3 ]
机构
[1] MIT, Harvard Mit Ctr Canc Nanotechnol Excellence, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] Brigham & Womens Hosp, Lab Nanomed & Biomat, Dept Anesthesiol Perioperat & Pain Med, Boston, MA 02115 USA
关键词
aptamer; controlled release; chemotherapy; combinatorial screening;
D O I
10.1073/pnas.0711714105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained elusive. A central challenge has been defining the optimal interplay of parameters that confer molecular targeting, immune evasion, and drug release to overcome the physiological barriers in vivo. Here, we report a strategy for narrowly changing the biophysicochemical properties of NPs in a reproducible manner, thereby enabling systematic screening of optimally formulated drug-encapsulated targeted NPs. NPs were formulated by the self-assembly of an amphiphilic triblock copolymer composed of end-to-end linkage of poly(lactic-co-glycolic-acid) (PLGA), polyethyleneglycol (PEG), and the A10 aptamer (Apt), which binds to the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer (PCa) cells, enabling, respectively, controlled drug release, "stealth" properties for immune evasion, and cell-specific targeting. Fine-tuning of NP size and drug release kinetics was further accomplished by controlling the copolymer composition. By using distinct ratios of PLGA-b-PEG-b-Apt triblock copolymer with PLGA-b-PEG diblock copolymer lacking the A10 Apt, we developed a series of targeted NPs with increasing Apt densities that inversely affected the amount of PEG exposure on NP surface and identified the narrow range of Apt density when the NPs were maximally targeted and maximally stealth, resulting in most efficient PCa cell uptake in vitro and in vivo. This approach may contribute to further development of targeted NPs as highly selective and effective therapeutic modalities.
引用
收藏
页码:2586 / 2591
页数:6
相关论文
共 27 条
[1]   Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA-mPEG nanoparticles [J].
Avgoustakis, K ;
Beletsi, A ;
Panagi, Z ;
Klepetsanis, P ;
Livaniou, E ;
Evangelatos, G ;
Ithakissios, DS .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2003, 259 (1-2) :115-127
[2]   Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery [J].
Cheng, Jianjun ;
Teply, Benjamin A. ;
Sherifi, Ines ;
Sung, Josephine ;
Luther, Gaurav ;
Gu, Frank X. ;
Levy-Nissenbaum, Etgar ;
Radovic-Moreno, Aleksandar F. ;
Langer, Robert ;
Farokhzad, Omid C. .
BIOMATERIALS, 2007, 28 (05) :869-876
[3]   Efficient delivery of a Bcl-2-specific antisense oligodeoxyribonucleotide (G3139) via transferrin receptor-targeted liposomes [J].
Chiu, Shih-Jiuan ;
Liu, Shujun ;
Perrotti, Danilo ;
Marcucci, Guido ;
Lee, Robert J. .
JOURNAL OF CONTROLLED RELEASE, 2006, 112 (02) :199-207
[4]   Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates [J].
Chu, TC ;
Shieh, F ;
Lavery, LA ;
Levy, M ;
Richards-Kortum, R ;
Korgel, BA ;
Ellington, AD .
BIOSENSORS & BIOELECTRONICS, 2006, 21 (10) :1859-1866
[5]   Aptamer:toxin conjugates that specifically target prostate tumor cells [J].
Chu, Ted C. ;
Marks, John W., III ;
Lavery, Laura A. ;
Faulkner, Sarah ;
Rosenblum, Michael G. ;
Ellington, Andrew D. ;
Levy, Matthew .
CANCER RESEARCH, 2006, 66 (12) :5989-5992
[6]   INVITRO SELECTION OF RNA MOLECULES THAT BIND SPECIFIC LIGANDS [J].
ELLINGTON, AD ;
SZOSTAK, JW .
NATURE, 1990, 346 (6287) :818-822
[7]   Nanopartide-aptamer bioconjugates: A new approach for targeting prostate cancer cells [J].
Farokhzad, OC ;
Jon, SY ;
Khademhosseini, A ;
Tran, TNT ;
LaVan, DA ;
Langer, R .
CANCER RESEARCH, 2004, 64 (21) :7668-7672
[8]   Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo [J].
Farokhzad, OC ;
Cheng, JJ ;
Teply, BA ;
Sherifi, I ;
Jon, S ;
Kantoff, PW ;
Richie, JP ;
Langer, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (16) :6315-6320
[9]   Nanomedicine: Developing smarter therapeutic and diagnostic modalities [J].
Farokhzad, Omid C. ;
Langer, Robert .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (14) :1456-1459
[10]   Cancer nanotechnology: Opportunities and challenges [J].
Ferrari, M .
NATURE REVIEWS CANCER, 2005, 5 (03) :161-171