Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture

被引:74
作者
Bevillard, E
Goodheart, DB
Karnati, SKR
Bayer, EA
Lamed, R
Miron, J
Nelson, KE
Morrison, M [1 ]
机构
[1] Ohio State Univ, Dept Anim Sci, MAPLE Res Program, Columbus, OH 43210 USA
[2] Weizmann Res Inst, Rehovot, Israel
[3] Tel Aviv Univ, Dept Mol Microbiol & Biotechnol, Ramat Aviv, Israel
[4] Volcani Res Inst, Bet Dagan, Israel
[5] Inst Genom Res, Rockville, MD USA
[6] N Amer Consortium Genom Fibrolyt Ruminal Bacteria, Columbus, OH USA
关键词
D O I
10.1128/JB.186.1.136-145.2004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The cellulolytic bacterium Ruminococcus albus 8 adheres tightly to cellulose, but the molecular biology underpinning this process is not well characterized. Subtractive enrichment procedures were used to isolate mutants of R. albus 8 that are defective in adhesion to cellulose. Adhesion of the mutant strains was reduced 50% compared to that observed with the wild-type strain, and cellulose solubilization was also shown to be slower in these mutant strains, suggesting that bacterial adhesion and cellulose solubilization are inextricably linked. Two-dimensional polyacrylamide gel electrophoresis showed that all three mutants studied were impaired in the production of two high-molecular-mass, cell-bound polypeptides when they were cultured with either cellobiose or cellulose. The identities of these proteins were determined by a combination of mass spectrometry methods and genome sequence data for R. albus 8. One of the polypeptides is a family 9 glycoside hydrolase (Cel9B), and the other is a family 48 glycoside hydrolase (Cel48A). Both Cel9B and Cel48A possess a modular architecture, Cel9B possesses features characteristic of the B-2 (or theme D) group of family 9 glycoside hydrolases, and Cel48A is structurally similar to the processive endocellulases CelF and CelS from Clostridium cellulolyticum and Clostridium thermocellum, respectively. Both Cel9B and Cel48A could be recovered by cellulose affinity procedures, but neither Cel9B nor Cel48A contains a dockerin, suggesting that these polypeptides are retained on the bacterial cell surface, and recovery by cellulose affinity procedures did not involve a clostridium-like cellulosome complex. Instead, both proteins possess a single copy of a novel X module with an unknown function at the C terminus. Such X modules are also present in several other R. albus glycoside hydrolases and are phylogentically distinct from the fibronectin III-like and X modules identified so far in other cellulolytic bacteria.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 52 条
[1]   Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences [J].
Aurilia, V ;
Martin, JC ;
McCrae, SI ;
Scott, KP ;
Rincon, MT ;
Flint, HJ .
MICROBIOLOGY-SGM, 2000, 146 :1391-1397
[2]   ADHERENCE OF CLOSTRIDIUM-THERMOCELLUM TO CELLULOSE [J].
BAYER, EA ;
KENIG, R ;
LAMED, R .
JOURNAL OF BACTERIOLOGY, 1983, 156 (02) :818-827
[3]   Cellulosomes - Structure and ultrastructure [J].
Bayer, EA ;
Shimon, LJW ;
Shoham, Y ;
Lamed, R .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 124 (2-3) :221-234
[4]   Cellulose, cellulases and cellulosomes [J].
Bayer, EA ;
Chanzy, H ;
Lamed, R ;
Shoham, Y .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1998, 8 (05) :548-557
[5]  
BAYER EA, 2001, PROKARYOTES EVOLVING
[6]   The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation [J].
Beguin, P ;
Lemaire, M .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1996, 31 (03) :201-236
[7]   Cel9M, a new family 9 cellulase of the Clostridium cellulolyticum cellulosome [J].
Belaich, A ;
Parsiegla, G ;
Gal, L ;
Villard, C ;
Haser, R ;
Belaich, JP .
JOURNAL OF BACTERIOLOGY, 2002, 184 (05) :1378-1384
[8]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   ANALYSIS OF ANTIBIOTIC SUSCEPTIBILITY AND EXTRACHROMOSOMAL DNA CONTENT OF RUMINOCOCCUS-ALBUS AND RUMINOCOCCUS-FLAVEFACIENS [J].
CHAMPION, KM ;
HELASZEK, CT ;
WHITE, BA .
CANADIAN JOURNAL OF MICROBIOLOGY, 1988, 34 (10) :1109-1115