Metabolic engineering in dark fermentative hydrogen production; theory and practice

被引:40
作者
Abo-Hashesh, Mona [1 ]
Wang, Ruofan [1 ,2 ]
Hallenbeck, Patrick C. [1 ]
机构
[1] Univ Montreal, Dept Microbiol & Immunol, Montreal, PQ H3C 3J7, Canada
[2] Chinese Acad Sci, Shanghai Inst Plant Physiol & Ecol, Shanghai, Peoples R China
关键词
Metabolic engineering; Biohydrogen; Hydrogenase; Anaerobic metabolism; ESCHERICHIA-COLI; CLOSTRIDIUM-TYROBUTYRICUM; MARKER REMOVAL; GENE; SYSTEM; BIOHYDROGEN; OPERON; EXPRESSION; FRAMEWORK; OVEREXPRESSION;
D O I
10.1016/j.biortech.2011.03.016
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Dark fermentation is an attractive option for hydrogen production since it could use already existing reactor technology and readily available substrates without requiring a direct input of solar energy. However, a number of improvements are required before the rates and yields of such a process approach those required for a practical process. Among the options for achieving the required advances, metabolic engineering offers some powerful tools for remodeling microbes to increase product production rates and molar yields. Here we review the current metabolic engineering tool box that is available, discuss the current status of engineering efforts as applied to dark hydrogen production, and suggest areas for future improvements. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8414 / 8422
页数:9
相关论文
共 77 条
[1]   Engineering of a synthetic hydF-hydE-hydG-hydA operon for biohydrogen production [J].
Akhtar, M. Kahm ;
Jones, Patrik R. .
ANALYTICAL BIOCHEMISTRY, 2008, 373 (01) :170-172
[2]   Systems-Level Metabolic Flux Profiling Elucidates a Complete, Bifurcated Tricarboxylic Acid Cycle in Clostridium acetobutylicum [J].
Amador-Noguez, Daniel ;
Feng, Xiao-Jiang ;
Fan, Jing ;
Roquet, Nathaniel ;
Rabitz, Herschel ;
Rabinowitz, Joshua D. .
JOURNAL OF BACTERIOLOGY, 2010, 192 (17) :4452-4461
[3]  
Baba Tomoya, 2006, Mol Syst Biol, V2
[4]   Mass spectrometry based metabolomics and enzymatic assays for functional genomics [J].
Baran, Richard ;
Reindl, Wolfgang ;
Northen, Trent R. .
CURRENT OPINION IN MICROBIOLOGY, 2009, 12 (05) :547-552
[5]   The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli [J].
Bisaillon, Ariane ;
Turcot, Jonathan ;
Hallenbeck, Patrick C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (11) :1504-1508
[6]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[7]   The surprising diversity of clostridial hydrogenases: a comparative genomic perspective [J].
Calusinska, Magdalena ;
Happe, Thomas ;
Joris, Bernard ;
Wilmotte, Annick .
MICROBIOLOGY-SGM, 2010, 156 :1575-1588
[8]   Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21 [J].
Chittibabu, G ;
Nath, K ;
Das, D .
PROCESS BIOCHEMISTRY, 2006, 41 (03) :682-688
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Genome-scale models of bacterial metabolism: reconstruction and applications [J].
Durot, Maxime ;
Bourguignon, Pierre-Yves ;
Schachter, Vincent .
FEMS MICROBIOLOGY REVIEWS, 2009, 33 (01) :164-190