One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions

被引:158
作者
Berezhkovskii, A [1 ]
Szabo, A
机构
[1] NIH, Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA
[2] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[3] Karpov Inst Phys Chem, Moscow 103064 K64, Russia
关键词
D O I
10.1063/1.1818091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For multidimensional activated rate processes controlled by diffusive crossing of a saddle point region, we show that a one-dimensional reaction coordinate can be constructed even when the diffusion anisotropy is arbitrary. The rate constant, found using the potential of mean force along this coordinate, is identical to that predicted by the multidimensional Kramers-Langer theory. This reaction coordinate minimizes the one-dimensional rate constant obtained using a trial reaction coordinate and is orthogonal to the stochastic separatrix, the transition state that separates reactants from products. (C) 2005 American Institute of Physics.
引用
收藏
页数:4
相关论文
共 28 条
[1]   ACTIVATED RATE-PROCESSES IN THE MULTIDIMENSIONAL CASE - CONSIDERATION OF RECROSSINGS IN THE MULTIDIMENSIONAL KRAMERS PROBLEM WITH ANISOTROPIC FRICTION [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
CHEMICAL PHYSICS, 1991, 157 (1-2) :141-155
[2]   SOLVENT SLOW-MODE INFLUENCE ON CHEMICAL-REACTION DYNAMICS - A MULTIDIMENSIONAL KRAMERS-THEORY TREATMENT [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
CHEMICAL PHYSICS LETTERS, 1990, 172 (3-4) :235-242
[3]   ACTIVATED RATE-PROCESSES - GENERALIZATION OF THE KRAMERS-GROTE-HYNES AND LANGER THEORIES [J].
BEREZHKOVSKII, AM ;
POLLAK, E ;
ZITSERMAN, VY .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (04) :2422-2437
[4]   MULTIDIMENSIONAL ACTIVATED RATE-PROCESSES WITH SLOWLY RELAXING MODE [J].
BEREZHKOVSKII, AM ;
ZITSERMAN, VY .
PHYSICA A, 1992, 187 (3-4) :519-550
[5]   Transition path sampling: Throwing ropes over rough mountain passes, in the dark [J].
Bolhuis, PG ;
Chandler, D ;
Dellago, C ;
Geissler, PL .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :291-318
[6]   INTERMEDIATES AND BARRIER CROSSING IN A RANDOM ENERGY-MODEL (WITH APPLICATIONS TO PROTEIN FOLDING) [J].
BRYNGELSON, JD ;
WOLYNES, PG .
JOURNAL OF PHYSICAL CHEMISTRY, 1989, 93 (19) :6902-6915
[7]   Activated rate processes in a double well coupled to a slow harmonic mode: Finite-barrier effects [J].
Drozdov, AN ;
Talkner, P .
PHYSICAL REVIEW E, 1996, 54 (06) :6160-6173
[8]   On the transition coordinate for protein folding [J].
Du, R ;
Pande, VS ;
Grosberg, AY ;
Tanaka, T ;
Shakhnovich, ES .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (01) :334-350
[9]   Kinetic pathways of ion pair dissociation in water [J].
Geissler, PL ;
Dellago, C ;
Chandler, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (18) :3706-3710
[10]  
Golub G. H., 1996, MATRIX COMPUTATIONS