A transient outward-rectifying K+ channel current down-regulated by cytosolic Ca2+ in Arabidopsis thaliana guard cells

被引:27
作者
Pei, ZM [1 ]
Baizabal-Aguirre, VM
Allen, GJ
Schroeder, JI
机构
[1] Univ Calif San Diego, Dept Biol, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Mol Genet, La Jolla, CA 92093 USA
关键词
D O I
10.1073/pnas.95.11.6548
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Sustained (noninactivating) outward-rectifying K+ channel currents have been identified in a variety of plant cell types and species. Here, in Arabidopsis thaliana guard cells, in addition to these sustained K+ currents, an inactivating outward-rectifying K+ current was characterized (plant A-type current: I-AP). I-AP activated rapidly with a time constant of 165 ms and inactivated slowly with a time constant of 7.2 sec at +40 mV. I-AP was enhanced by increasing the duration (from 0 to 20 sec) and degree (from +20 to -100 mV) of prepulse hyperpolarization. Ionic substitution and relaxation (tail) current recordings showed that outward IAP was mainly carried by Kf ions. In contrast to the sustained outward-rectifying K+ currents, cytosolic alkaline pH was found to inhibit I-AP and extracellular K+ was required for I-AP activity. Furthermore, increasing cytosolic free Ca2+ in the physiological range strongly inhibited I-AP activity with a half inhibitory concentration of approximate to 94 nM. We present a detailed characterization of an inactivating K+ current in a higher plant cell. Regulation of I-AP by diverse factors including membrane potential, cytosolic Ca2+ and pH, and extracellular K+ and Ca2+ implies that the inactivating I-AP described here may have important functions during transient depolarizations found in guard cells, and in integrated signal transduction processes during stomatal movements.
引用
收藏
页码:6548 / 6553
页数:6
相关论文
共 57 条
[1]   INACTIVATION OF SODIUM CHANNEL .2. GATING CURRENT EXPERIMENTS [J].
ARMSTRONG, CM ;
BEZANILLA, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1977, 70 (05) :567-590
[2]   SENSITIVITY TO ABSCISIC-ACID OF GUARD-CELL K+ CHANNELS IS SUPPRESSED BY ABI1-1, A MUTANT ARABIDOPSIS GENE ENCODING A PUTATIVE PROTEIN PHOSPHATASE [J].
ARMSTRONG, F ;
LEUNG, J ;
GRABOV, A ;
BREARLEY, J ;
GIRAUDAT, J ;
BLATT, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (21) :9520-9524
[3]   SIGNAL-TRANSDUCTION IN GUARD-CELLS [J].
ASSMANN, SM .
ANNUAL REVIEW OF CELL BIOLOGY, 1993, 9 :345-375
[4]   POTASSIUM-DEPENDENT, BIPOLAR GATING OF K+ CHANNELS IN GUARD-CELLS [J].
BLATT, MR .
JOURNAL OF MEMBRANE BIOLOGY, 1988, 102 (03) :235-246
[5]  
BLATT MR, 1993, PLANTA, V191, P330, DOI 10.1007/BF00195690
[6]   REVERSIBLE INACTIVATION OF K+ CHANNELS OF VICIA STOMATAL GUARD-CELLS FOLLOWING THE PHOTOLYSIS OF CAGED INOSITOL 1,4,5-TRISPHOSPHATE [J].
BLATT, MR ;
THIEL, G ;
TRENTHAM, DR .
NATURE, 1990, 346 (6286) :766-769
[7]   TETRAETHYLAMMONIUM BLOCKADE DISTINGUISHES 2 INACTIVATION MECHANISMS IN VOLTAGE-ACTIVATED K+ CHANNELS [J].
CHOI, KL ;
ALDRICH, RW ;
YELLEN, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (12) :5092-5095
[8]   New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency [J].
Czempinski, K ;
Zimmermann, S ;
Ehrhardt, T ;
MullerRober, B .
EMBO JOURNAL, 1997, 16 (10) :2565-2575
[9]   Action-potential propagation gated by an axonal I-A-like K+ conductance in hippocampus [J].
Debanne, D ;
Guerineau, NC ;
Gahwiler, BH ;
Thompson, SM .
NATURE, 1997, 389 (6648) :286-289
[10]   ION EFFECTS ON GATING OF THE CA2+-ACTIVATED K+ CHANNEL CORRELATE WITH OCCUPANCY OF THE PORE [J].
DEMO, SD ;
YELLEN, G .
BIOPHYSICAL JOURNAL, 1992, 61 (03) :639-648