The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I -: Implications for the mechanism of proton pumping

被引:53
作者
Holt, PJ [1 ]
Morgan, DJ [1 ]
Sazanov, LA [1 ]
机构
[1] MRC, Dunn Human Nutr Unit, Cambridge CB2 2XY, England
关键词
D O I
10.1074/jbc.M308247200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The molecular organization of bacterial NADH: ubiquinone oxidoreductase (complex I or NDH-1) is not established, apart from a rough separation into dehydrogenase, connecting and membrane domains. In this work, complex I was purified from Escherichia coli and fragmented by replacing dodecylmaltoside with other detergents. Exchange into decyl maltoside led to the removal of the hydrophobic subunit NuoL from the otherwise intact complex. Diheptanoyl phosphocholine led to the loss of NuoL and NuoM subunits, whereas other subunits remained in the complex. The presence of N,N-dimethyldodecylamine N-oxide or Triton X-100 led to further disruption of the membrane domain into fragments containing NuoL/M/N, NuoA/K/N, and NuoH/J subunits. Among the hydrophilic subunits, NuoCD was most readily dissociated from the complex, whereas NuoB was partially dissociated from the peripheral arm assembly in N, N-dimethyldodecylamine N-oxide. A model of subunit arrangement in bacterial complex I based on these data is proposed. Subunits NuoL and NuoM, which are homologous to antiporters and are implicated in proton pumping, are located at the distal end of the membrane arm, spatially separated from the redox centers of the peripheral arm. This is consistent with proposals that the mechanism of proton pumping by complex I is likely to involve long range conformational changes.
引用
收藏
页码:43114 / 43120
页数:7
相关论文
共 48 条
[1]   Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH-ubiquinone oxidoreductase (Complex I) [J].
Albracht, SPJ ;
Hedderich, R .
FEBS LETTERS, 2000, 485 (01) :1-6
[2]   Mutagenesis of subunit N of the Escherichia coli complex I.: Identification of the initiation codon and the sensitivity of mutants to decylubiquinone [J].
Amarneh, B ;
Vik, SB .
BIOCHEMISTRY, 2003, 42 (17) :4800-4808
[3]   The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme [J].
Bai, YD ;
Attardi, G .
EMBO JOURNAL, 1998, 17 (16) :4848-4858
[4]   Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria [J].
Bai, YD ;
Shakeley, RM ;
Attardi, G .
MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (03) :805-815
[5]   CATALYTIC SECTOR OF COMPLEX-I (NADH-UBIQUINONE OXIDOREDUCTASE) - SUBUNIT STOICHIOMETRY AND SUBSTRATE-INDUCED CONFORMATION CHANGES [J].
BELOGRUDOV, G ;
HATEFI, Y .
BIOCHEMISTRY, 1994, 33 (15) :4571-4576
[6]   A novel, enzymatically active conformation of the Escherichia coli NADH:ubiquinone oxidoreductase (complex I) [J].
Böttcher, B ;
Scheide, D ;
Hesterberg, M ;
Nagel-Steger, L ;
Friedrich, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (20) :17970-17977
[7]   Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction [J].
Brandt, U .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1997, 1318 (1-2) :79-91
[8]   Proton pumping by NADH:ubiquinone oxidoreductase.: A redox driven conformational change mechanism? [J].
Brandt, U ;
Kerscher, S ;
Dröse, S ;
Zwicker, K ;
Zickermann, V .
FEBS LETTERS, 2003, 545 (01) :9-17
[9]   Impact of mutations affecting ND mitochondria-encoded Subunits on the activity and assembly of complex I in chlamydomonas. Implication for the structural organization of the enzyme [J].
Cardol, P ;
Matagne, RF ;
Remacle, C .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 319 (05) :1211-1221
[10]   Definition of the nuclear encoded protein composition of bovine heart mitochondrial complex I - Identification of two new subunits [J].
Carroll, J ;
Shannon, RJ ;
Fearnley, IM ;
Walker, JE ;
Hirst, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (52) :50311-50317