Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis

被引:117
作者
Kao, KC
Yang, YL
Boscolo, R
Sabatti, C
Roychowdhury, V
Liao, JC [1 ]
机构
[1] Univ Calif Los Angeles, Dept Chem Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Dept Stat, Los Angeles, CA 90095 USA
关键词
D O I
10.1073/pnas.0305287101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cells adjust gene expression profiles in response to environmental and physiological changes through a series of signal transduction pathways. Upon activation or deactivation, the terminal regulators bind to or dissociate from DNA, respectively, and modulate transcriptional activities on particular promoters. Traditionally, individual reporter genes have been used to detect the activity of the transcription factors. This approach works well for simple, non-overlapping transcription pathways. For complex transcriptional networks, more sophisticated tools are required to deconvolute the contribution of each regulator. Here, we demonstrate the utility of network component analysis in determining multiple transcription factor activities based on transcriptome profiles and available connectivity information regarding network connectivity. We used Escherichia coli carbon source transition from glucose to acetate as a model system. Key results from this analysis were either consistent with physiology or verified by using independent measurements.
引用
收藏
页码:641 / 646
页数:6
相关论文
共 33 条
[1]   Biological networks [J].
Alm, E ;
Arkin, AP .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2003, 13 (02) :193-202
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
Bussemaker H J, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P67
[4]   Building a dictionary for genomes: Identification of presumptive regulatory sites by statistical analysis [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10096-10100
[5]   THE LEUCINE-RESPONSIVE REGULATORY PROTEIN, A GLOBAL REGULATOR OF METABOLISM IN ESCHERICHIA-COLI [J].
CALVO, JM ;
MATTHEWS, RG .
MICROBIOLOGICAL REVIEWS, 1994, 58 (03) :466-490
[6]  
Courcelle J, 2001, GENETICS, V158, P41
[7]   Regulation of acetate metabolism by protein phosphorylation in enteric bacteria [J].
Cozzone, AJ .
ANNUAL REVIEW OF MICROBIOLOGY, 1998, 52 :127-164
[8]   BETWEEN FEAST AND FAMINE - ENDOGENOUS INDUCER SYNTHESIS IN THE ADAPTATION OF ESCHERICHIA-COLI TO GROWTH WITH LIMITING CARBOHYDRATES [J].
DEATH, A ;
FERENCI, T .
JOURNAL OF BACTERIOLOGY, 1994, 176 (16) :5101-5107
[9]   Inferring genetic networks and identifying compound mode of action via expression profiling [J].
Gardner, TS ;
di Bernardo, D ;
Lorenz, D ;
Collins, JJ .
SCIENCE, 2003, 301 (5629) :102-105
[10]   Genomic expression programs in the response of yeast cells to environmental changes [J].
Gasch, AP ;
Spellman, PT ;
Kao, CM ;
Carmel-Harel, O ;
Eisen, MB ;
Storz, G ;
Botstein, D ;
Brown, PO .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (12) :4241-4257