An efficient linear-scaling Ewald method for long-range electrostatic interactions in combined QM/MM calculations

被引:269
作者
Nam, K
Gao, JL
York, DM
机构
[1] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Inst Supercomp, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/ct049941i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method is presented for the efficient evaluation of long-range electrostatic forces in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical atoms and a real-space multipolar expansion for the quantum mechanical electrostatic terms plus a pairwise periodic correction factor for the QM and QM/MM interactions that does not need to be re-evaluated during the self-consistent field procedure. The method is tested in a series of molecular dynamics simulations of the ion-ion association of ammonium chloride and ammonium metaphosphate and the dissociative phosphoryl transfer of methyl phosphate and acetyl phosphate. Results from periodic boundary molecular dynamics (PBMD) simulations employing the QM/MM-Ewald method are compared with corresponding PBMD simulations using electrostatic cutoffs and with results from nonperiodic stochastic boundary molecular dynamics (SBMD) simulations, with cutoffs and with full electrostatics (no cutoff). The present method allows extension of linear-scaling Ewald methods to molecular simulations of enzyme and ribozyme reactions that use combined QM/MM potentials.
引用
收藏
页码:2 / 13
页数:12
相关论文
共 95 条
[1]   TAMING THE EWALD SUM IN THE COMPUTER-SIMULATION OF CHARGED SYSTEMS [J].
ADAMS, DJ ;
DUBEY, GS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 72 (01) :156-176
[2]   Protein phosphorylation and signaling [J].
Ahn, N .
CHEMICAL REVIEWS, 2001, 101 (08) :2207-2207
[3]  
Allen M. P., 2009, Computer Simulation of Liquids
[4]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[5]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[6]  
Arfken G. B., 2001, Mathematical Methods for Physicists
[7]   COMPUTER-SIMULATION STUDY OF THE MEAN FORCES BETWEEN FERROUS AND FERRIC IONS IN WATER [J].
BADER, JS ;
CHANDLER, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (15) :6423-6427
[8]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[9]   Basic ideas for the correction of semiempirical methods describing H-bonded systems [J].
Bernal-Uruchurtu, MI ;
Ruiz-López, MF .
CHEMICAL PHYSICS LETTERS, 2000, 330 (1-2) :118-124
[10]   Removal of pressure and free energy artifacts in charged periodic systems via net charge corrections to the Ewald potential [J].
Bogusz, S ;
Cheatham, TE ;
Brooks, BR .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (17) :7070-7084