Fractal dimensions of chaotic saddles of dynamical systems

被引:44
作者
Hunt, BR
Ott, E
Yorke, JA
机构
[1] UNIV MARYLAND,DEPT ELECT ENGN,COLLEGE PK,MD 20742
[2] UNIV MARYLAND,DEPT PHYS,COLLEGE PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLLEGE PK,MD 20742
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 05期
关键词
D O I
10.1103/PhysRevE.54.4819
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A formula, applicable to invertible maps of arbitrary dimensionality, is derived for the information dimensions of the natural measures of a nonattracting chaotic set and of its stable and unstable manifolds. The result gives these dimensions in terms of the Lyapunov exponents and the decay time of the associated chaotic transient. As an example, the formula is applied to the physically interesting situation of filtering of data from chaotic systems.
引用
收藏
页码:4819 / 4823
页数:5
相关论文
共 22 条
[1]  
Alexander J., 1984, Ergod. Th. Dynam. Sys, V4, P1
[2]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[3]   CHAOTIC SCATTERING IN SYSTEMS WITH MORE THAN 2 DEGREES OF FREEDOM [J].
DING, MZ ;
OTT, E .
THREE-DIMENSIONAL SYSTEMS, 1995, 751 :182-204
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   THE DIMENSION OF CHAOTIC ATTRACTORS [J].
FARMER, JD ;
OTT, E ;
YORKE, JA .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 7 (1-3) :153-180
[6]   THE LIAPUNOV DIMENSION OF STRANGE ATTRACTORS [J].
FREDERICKSON, P ;
KAPLAN, JL ;
YORKE, ED ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :185-207
[7]   STRANGE SADDLES AND THE DIMENSIONS OF THEIR INVARIANT-MANIFOLDS [J].
HSU, GH ;
OTT, E ;
GREBOGI, C .
PHYSICS LETTERS A, 1988, 127 (04) :199-204
[8]   HAMILTONIAN SCATTERING CHAOS IN A HYDRODYNAMICAL SYSTEM [J].
JUNG, C ;
ZIEMNIAK, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14) :3929-3943
[9]   Application of scattering chaos to particle transport in a hydrodynamical flow [J].
Jung, C. ;
Tel, T. ;
Ziemniak, E. .
CHAOS, 1993, 3 (04) :555-568
[10]   REPELLERS, SEMI-ATTRACTORS, AND LONG-LIVED CHAOTIC TRANSIENTS [J].
KANTZ, H ;
GRASSBERGER, P .
PHYSICA D, 1985, 17 (01) :75-86