Quasi-interpolants based on trigonometric splines

被引:40
作者
Lyche, T
Schumaker, LL
Stanley, S
机构
[1] Inst Informat, N-0316 Oslo, Norway
[2] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[3] Samford Univ, Dept Math & Comp Sci, Birmingham, AL 35229 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jath.1998.3196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general theory of quasi-interpolants based on trigonometric splines is developed which is analogous to the polynomial spline case. The aim is to construct quasi-interpolants which are local, easy to compute, and which apply to a wide class of functions. As examples, we give a detailed treatment including error bounds for two classes which are especially useful in practice. (C) 1998 Academic Press.
引用
收藏
页码:280 / 309
页数:30
相关论文
共 13 条
[1]  
De Boor C., 1973, Journal of Approximation Theory, V8, P19, DOI 10.1016/0021-9045(73)90029-4
[2]   Null spaces of differential operators, polar forms, and splines [J].
Gonsor, D ;
Neamtu, M .
JOURNAL OF APPROXIMATION THEORY, 1996, 86 (01) :81-107
[3]  
Koch P. E., 1995, Advances in Computational Mathematics, V3, P405, DOI 10.1007/BF03028369
[4]  
Koch P. E., 1980, QUANTITATIVE APPROXI, P185
[5]  
KOCH PE, 1992, IND MATH WEEK, P117
[6]  
KOCH PE, 1989, KONGELIGE NORSKE VIT, V2, P73
[7]   STABLE RECURRENCE RELATION FOR TRIGONOMETRIC B-SPLINES [J].
LYCHE, T ;
WINTHER, R .
JOURNAL OF APPROXIMATION THEORY, 1979, 25 (03) :266-279
[8]  
Lyche T., 1979, BIT (Nordisk Tidskrift for Informationsbehandling), V19, P229, DOI 10.1007/BF01930853
[9]   LOCAL SPLINE APPROXIMATION METHODS [J].
LYCHE, T ;
SCHUMAKER, LL .
JOURNAL OF APPROXIMATION THEORY, 1975, 15 (04) :294-325
[10]  
SCHOENBERG IJ, 1964, J MATH MECH, V13, P795