Gene expression profiling of breast cancer

被引:57
作者
Cheang, Maggie C. U. [1 ]
van de Rijn, Matt [2 ]
Nielsen, Torsten O. [1 ]
机构
[1] British Columbia Canc Agcy, Vancouver Coastal Hlth Res Inst, Genet Pathol Evaluat Ctr, Vancouver, BC V6H 3Z6, Canada
[2] Stanford Univ, Med Ctr, Dept Pathol, Stanford, CA 94305 USA
关键词
microarrays; biomarkers; molecular signatures translational research;
D O I
10.1146/annurev.pathmechdis.3.121806.151505
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
DNA microarray platforms for gene expression profiling were invented relatively recently and breast cancer has been among the earliest and most intensely studied diseases using this technology. The molecular signatures so identified help reveal the biologic spectrum of breast cancers, provide diagnostic tools as well as prognostic and predictive gene signatures, and may identify new therapeutic targets. Data are best presented in an open access format to facilitate external validation, the most crucial step in identifying robust, reproducible gene signatures suitable for clinical translation. Clinically practical applications derived from full expression profile Studies already in use include reduced versions of microarrays representing key discriminatory genes and therapeutic targets, quantitative polymerase chain reaction assays, or immunohistochemical Surrogate panels (suitable for application to standard pathology blocks). Prospective trials are now underway to determine the value of such tools for clinical decision making in breast cancer; these efforts may serve as a model for using such approaches in other tumor types.
引用
收藏
页码:67 / 97
页数:31
相关论文
共 150 条
[71]  
Jobson J.D., 1992, Applied Multivariate Data Analysis, Volume II
[72]   Discovery and validation of breast cancer subtypes [J].
Kapp, Amy V. ;
Jeffrey, Stefanie S. ;
Langerod, Anita ;
Borresen-Dale, Anne-Lise ;
Han, Wonshik ;
Noh, Dong-Young ;
Bukholm, Ida R. K. ;
Nicolau, Monica ;
Brown, Patrick O. ;
Tibshirani, Robert .
BMC GENOMICS, 2006, 7 (1)
[73]  
Kaufman L., 1990, Finding Groups in Data: An Introduction to Cluster Analysis, DOI DOI 10.1002/9780470316801
[74]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[75]   Tissue microarrays for high-throughput molecular profiling of tumor specimens [J].
Kononen, J ;
Bubendorf, L ;
Kallioniemi, A ;
Bärlund, M ;
Schraml, P ;
Leighton, S ;
Torhorst, J ;
Mihatsch, MJ ;
Sauter, G ;
Kallioniemi, OP .
NATURE MEDICINE, 1998, 4 (07) :844-847
[76]  
Korkola JE, 2003, CANCER RES, V63, P7167
[77]   Accurate prediction of BRCA1 and BRCA2 heterozygous genotype using expression profiling after induced DNA damage [J].
Kote-Jarai, Zsofia ;
Matthews, Lucy ;
Osorio, Ana ;
Shanley, Susan ;
Giddings, Ian ;
Moreews, Francois ;
Locke, Imogen ;
Evans, D. Gareth ;
Eccles, Diana .
CLINICAL CANCER RESEARCH, 2006, 12 (13) :3896-3901
[78]   Analysis of matched mRNA measurements from two different microarray technologies [J].
Kuo, WP ;
Jenssen, TK ;
Butte, AJ ;
Ohno-Machado, L ;
Kohane, IS .
BIOINFORMATICS, 2002, 18 (03) :405-412
[79]   Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection [J].
Li, C ;
Wong, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :31-36
[80]   The prognostic role of a gene signature from tumorigenic breast-cancer cells. [J].
Liu, Rui ;
Wang, Xinhao ;
Chen, Grace Y. ;
Dalerba, Piero ;
Gurney, Austin ;
Hoey, Timothy ;
Sherlock, Gavin ;
Lewicki, John ;
Shedden, Kerby ;
Clarke, Michael F. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (03) :217-226