Zitterbewegung and its effects on electrons in semiconductors

被引:101
作者
Zawadzki, W [1 ]
机构
[1] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland
来源
PHYSICAL REVIEW B | 2005年 / 72卷 / 08期
关键词
D O I
10.1103/PhysRevB.72.085217
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analogy between the band structure of narrow gap semiconductors and the Dirac equation for relativistic electrons in vacuum is used to demonstrate that semiconductor electrons experience a Zitterbewegung (trembling motion). Its frequency is omega(Z)approximate to E-g/h and its amplitude is lambda(Z), where lambda(Z)=h/m(0)(*)u corresponds to the Compton wavelength in vacuum (E-g is the energy gap, m(0)(*) is the effective mass, and u approximate to 1.3x10(8) cm/s). Once the electrons are described by a two-component spinor for a specific energy band there is no Zitterbewegung but the electrons should be treated as extended objects of size lambda(Z). The magnitude of lambda(Z) in narrow gap semiconductors can be as large as 70 A. Possible consequences of the above predictions are indicated.
引用
收藏
页数:4
相关论文
共 30 条
[1]  
Akhiezer A. I., 1969, Quantum Electrodynamics
[2]  
[Anonymous], 1992, QUANTUM ELECTRODYNAM
[3]  
ARONOV AG, 1966, ZH EKSP TEOR FIZ, V51, P281
[4]   ZITTERBEWEGUNG AND THE INTERNAL GEOMETRY OF THE ELECTRON [J].
BARUT, AO ;
BRACKEN, AJ .
PHYSICAL REVIEW D, 1981, 23 (10) :2454-2463
[5]  
Bjorken JD, 1964, RELATIVISTIC QUANTUM
[6]   MAGNETIC SUSCEPTIBILITY OF INSB [J].
BOWERS, R ;
YAFET, Y .
PHYSICAL REVIEW, 1959, 115 (05) :1165-1172
[7]   TUNNELING SPECTROSCOPY IN GAAS [J].
CONLEY, JW ;
MAHAN, GD .
PHYSICAL REVIEW, 1967, 161 (03) :681-+
[8]  
Dirac P.A.M., 1958, The Principles of Quantum Mechanics
[9]   ON THE DIRAC THEORY OF SPIN 1/2 PARTICLES AND ITS NON-RELATIVISTIC LIMIT [J].
FOLDY, LL ;
WOUTHUYSEN, SA .
PHYSICAL REVIEW, 1950, 78 (01) :29-36
[10]  
Greiner W., 1994, QUANTUM CHROMODYNAMI