Characterization of the spatial complex behavior and transition to chaos in flow systems

被引:3
作者
Falcioni, M
Vergni, D
Vulpiani, A
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Univ Roma La Sapienza, Ist Nazl Fis Mat, I-00185 Rome, Italy
关键词
spatial complexity; non-chaotic systems; flow systems;
D O I
10.1016/S0167-2789(98)00207-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a "spatial" Lyapunov exponent to characterize the complex behavior of non-chaotic but convectively unstable flow sytems. This complexity is of spatial type and is due to sensitivity to the boundary conditions. We show that there exists a relation between the spatial-complexity index we define and the comoving Lyapunov exponents. In such systems the transition to chaos, i.e., the occurrence of a positive Lyapunov exponent, can manifest itself in two different ways. In the first case (from neither chaotic nor spatially complex behavior to chaos) one observes the typical scenario; i.e., as the system size grows up the spectrum of the Lyapunov exponents gives rise to a density. In the second case (when the chaos develops from a convectively unstable situation) one observes only a finite number of positive Lyapunov exponents. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 78
页数:14
相关论文
共 35 条
[1]  
AFRAIMOVICH VS, 1993, THEORY APPL COUPLED, P117
[2]   NOISE AMPLIFICATION IN OPEN TAYLOR-COUETTE FLOW [J].
BABCOCK, KL ;
AHLERS, G ;
CANNELL, DS .
PHYSICAL REVIEW E, 1994, 50 (05) :3670-3692
[3]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[4]  
Benettin G., 1980, MECCANICA, V15, P21, DOI DOI 10.1007/BF02128237
[5]   CHARACTERIZATION OF INTERMITTENCY IN CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (12) :2157-2165
[6]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[7]   SPATIOTEMPORAL CHAOS [J].
BOHR, T ;
BOSCH, E ;
VANDEWATER, W .
NATURE, 1994, 372 (6501) :48-48
[8]   A MECHANISM FOR LOCALIZED TURBULENCE [J].
BOHR, T ;
RAND, DA .
PHYSICA D, 1991, 52 (2-3) :532-543
[9]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[10]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516