Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation

被引:141
作者
Verin, AD [1 ]
Birukova, A [1 ]
Wang, PY [1 ]
Liu, F [1 ]
Becker, P [1 ]
Birukov, K [1 ]
Garcia, JGN [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Johns Hopkins Asthma & Allergy Ctr, Div Pulm & Crit Care Med, Baltimore, MD 21224 USA
关键词
transendothelial electrical resistance; nonmuscle contraction; actin rearrangement;
D O I
10.1152/ajplung.2001.281.3.L565
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Endothelial cell (EC) barrier regulation is critically dependent on cytoskeletal components (microfilaments and microtubules). Because several edemagenic agents induce actomyosin-driven EC contraction tightly linked to myosin light chain (MLC) phosphorylation and microfilament reorganization, we examined the role of microtubule components in bovine EC barrier regulation. Nocodazole or vinblastine, inhibitors of microtubule polymerization, significantly decreased transendothelial electrical resistance in a dose-dependent manner, whereas pretreatment with the microtubule stabilizer paclitaxel significantly attenuated this effect. Decreases in transendothelial electrical resistance induced by microtubule disruption correlated with increases in lung permeability in isolated ferret lung preparations as well as with increases in EC stress fiber content and MLC phosphorylation. The increases in MLC phosphorylation were attributed to decreases in myosin-specific phosphatase activity without significant increases in MLC kinase activity and were attenuated by paclitaxel or by several strategies (C3 exotoxin, toxin B, Rho kinase inhibition) to inhibit Rho GTPase. Together, these results suggest that microtubule disruption initiates specific signaling pathways that cross talk with microfilament networks, resulting in Rho-mediated EC contractility and barrier dysfunction.
引用
收藏
页码:L565 / L574
页数:10
相关论文
共 67 条
[1]   Bacterial toxins block endothelial wound repair - Evidence that Rho GTPases control cytoskeletal rearrangements in migrating endothelial cells [J].
Aepfelbacher, M ;
Essler, M ;
Huber, E ;
Sugai, M ;
Weber, SC .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 1997, 17 (09) :1623-1629
[2]   Bacterial toxins that target Rho proteins [J].
Aktories, K .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (05) :827-829
[3]  
AKTORIES K, 1992, CURR TOP MICROBIOL, V175, P115
[4]   Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase) [J].
Amano, M ;
Ito, M ;
Kimura, K ;
Fukata, Y ;
Chihara, K ;
Nakano, T ;
Matsuura, Y ;
Kaibuchi, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (34) :20246-20249
[5]   Effect of disruption of the cytoskeleton on smooth muscle contraction [J].
Battistella-Patterson, AS ;
Wang, S ;
Wright, GL .
CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 1997, 75 (12) :1287-1299
[6]   SEPARATE EFFECTS OF ISCHEMIA AND REPERFUSION ON VASCULAR-PERMEABILITY IN VENTILATED FERRET LUNGS [J].
BECKER, PM ;
PEARSE, DB ;
PERMUTT, S ;
SYLVESTER, JT .
JOURNAL OF APPLIED PHYSIOLOGY, 1992, 73 (06) :2616-2622
[7]   Involvement of microtubules in the control of adhesion-dependent signal transduction [J].
Bershadsky, A ;
Chausovsky, A ;
Becker, E ;
Lyubimova, A ;
Geiger, B .
CURRENT BIOLOGY, 1996, 6 (10) :1279-1289
[8]   SYNTHESIS AND EXPRESSION OF SMOOTH-MUSCLE PHENOTYPE MARKERS IN PRIMARY CULTURE OF RABBIT AORTIC SMOOTH-MUSCLE CELLS - INFLUENCE OF SEEDING DENSITY AND MEDIA AND RELATION TO CELL CONTRACTILITY [J].
BIRUKOV, KG ;
FRID, MG ;
ROGERS, JD ;
SHIRINSKY, VP ;
KOTELIANSKY, VE ;
CAMPBELL, JH ;
CAMPBELL, GR .
EXPERIMENTAL CELL RESEARCH, 1993, 204 (01) :46-53
[9]   Introduction of C3 exoenzyme into cultured endothelium by lipofectamine [J].
Borbiev, T ;
Nurmukhambetova, S ;
Liu, F ;
Verin, AD ;
Garcia, JGN .
ANALYTICAL BIOCHEMISTRY, 2000, 285 (02) :260-264
[10]  
Brown RA, 1996, J CELL PHYSIOL, V169, P439, DOI 10.1002/(SICI)1097-4652(199612)169:3<439::AID-JCP4>3.0.CO