Fas-induced B cell apoptosis requires an increase in free cytosolic magnesium as an early event

被引:53
作者
Chien, MM
Zahradka, KE
Newell, MK
Freed, JH
机构
[1] Natl Jewish Med & Res Ctr, Dept Med, Div Basic Immunol, Denver, CO 80206 USA
[2] Univ Colorado, Hlth Sci Ctr, Dept Immunol, Denver, CO 80262 USA
关键词
D O I
10.1074/jbc.274.11.7059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ligation of the Fas molecule expressed on the surface of a cell initiates multiple signaling pathways that result in the apoptotic death of that cell. We have examined Mg2+ mobilization as well as Ca2+ mobilization in B cells undergoing Fas-initiated apoptosis, Our results indicate that cytosolic levels of free (non-complexed) Mg2+ ([M2+](i)) and Ca2+ ([Ca2+](i)) increase in cells undergoing apoptosis, Furthermore, the percentages of cells mobilizing Mg2+, fragmenting DNA, or externalizing phosphatidylserine (PS) increase in parallel as the concentration of anti-Fas monoclonal antibody is raised. Kinetic analysis suggests that Mg2+ mobilization is an early event in apoptosis, clearly preceding DNA fragmentation and probably occurring prior to externalization of PS as well. The source of Mg2+ that produces the increases in [Mg2+](i) is intracellular and most likely is the mitochondria. Extended pretreatment of B cells with carbonyl cyanide m-chlorophenylhydrazone, an inhibitor of mitochondrial oxidative phosphorylation, produces proportional decreases in the percentage of cells mobilizing Mg2+, fragmenting DNA, and externalizing PS in response to anti-Fas monoclonal antibody treatment. These observations are consistent with the hypothesis that elevated [Mg2+](i) is required for apoptosis. Furthermore, we propose that the increases in [Mg2+](i) function not only as cofactors for Mg2+-dependent endonucleases, but also to facilitate the release of cytochrome c from the mitochondria, which drives many of the post-mitochondrial, caspase-mediated events in apoptotic cells.
引用
收藏
页码:7059 / 7066
页数:8
相关论文
共 48 条
[1]   RECONSTITUTION OF ATP-DEPENDENT AMINOPHOSPHOLIPID TRANSLOCATION IN PROTEOLIPOSOMES [J].
AULAND, ME ;
ROUFOGALIS, BD ;
DEVAUX, PF ;
ZACHOWSKI, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :10938-10942
[2]   THE CD40 ANTIGEN AND ITS LIGAND [J].
BANCHEREAU, J ;
BAZAN, F ;
BLANCHARD, D ;
BRIERE, F ;
GALIZZI, JP ;
VANKOOTEN, C ;
LIU, YJ ;
ROUSSET, F ;
SAELAND, S .
ANNUAL REVIEW OF IMMUNOLOGY, 1994, 12 :881-922
[3]   Calcium - a life and death signal [J].
Berridge, MJ ;
Bootman, MD ;
Lipp, P .
NATURE, 1998, 395 (6703) :645-648
[4]   ION REGULATION OF PHOSPHATIDYLSERINE AND PHOSPHATIDYLETHANOLAMINE OUTSIDE INSIDE TRANSLOCATION IN HUMAN-ERYTHROCYTES [J].
BITBOL, M ;
FELLMANN, P ;
ZACHOWSKI, A ;
DEVAUX, PF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1987, 904 (02) :268-282
[5]  
BOND M, 1987, J BIOL CHEM, V262, P15630
[6]   Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization [J].
Bossy-Wetzel, E ;
Newmeyer, DD ;
Green, DR .
EMBO JOURNAL, 1998, 17 (01) :37-49
[7]   Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase [J].
Bratton, DL ;
Fadok, VA ;
Richter, DA ;
Kailey, JM ;
Guthrie, LA ;
Henson, PM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (42) :26159-26165
[8]   Mitochondrial control of apoptosis:: the role of cytochrome c [J].
Cai, JY ;
Yang, J ;
Jones, DP .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1366 (1-2) :139-149
[9]  
CHEEK TR, 1989, J CELL SCI, V93, P211
[10]  
Cittadini A, 1991, Magnes Res, V4, P23