Experimental genome evolution: large-scale genome rearrangements associated with resistance to replacement of a chromosomal restriction-modification gene complex

被引:34
作者
Handa, N [1 ]
Nakayama, Y [1 ]
Sadykov, M [1 ]
Kobayashi, I [1 ]
机构
[1] Univ Tokyo, Inst Med Sci, Dept Mol Biol, Tokyo 1088639, Japan
关键词
D O I
10.1046/j.1365-2958.2001.02436.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Type II restriction enzymes are paired with modification enzymes that protect type II restriction sites from cleavage by methylating them. A plasmid carrying a type II restriction-modification gene complex is not easily replaced by an incompatible plasmid because loss of the former leads to cell death through chromosome cleavage. In the present work, we looked to see whether a chromosomally located restriction-modification gene complex could be replaced by a homologous stretch of DNA, We tried to replace the PaeR71 gene complex on the Escherichia coli chromosome by transducing a homologous stretch of PaeR71-modified DNA, The replacement efficiency of the restriction-modification complex was lower than expected. Some of the resulting recombinant clones retained the recipient restriction-modification gene complex as well as the homologous DNA (donor allele), and slowly lost the donor allele in the absence of selection. Analysis of their genome-wide rearrangements by Southern hybridization, inverse polymerase chain reaction (iPCR) and sequence determination demonstrated the occurrence of unequal homologous recombination between copies of the transposon IS3, It was strongly suggested that multiple rounds of unequal IS3-IS3 recombination caused large-scale duplication and inversion of the chromosome, and that only one of the duplicated copies of the recipient PaeR71 was replaced.
引用
收藏
页码:932 / 940
页数:9
相关论文
共 36 条
[1]   Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori [J].
Alm, RA ;
Ling, LSL ;
Moir, DT ;
King, BL ;
Brown, ED ;
Doig, PC ;
Smith, DR ;
Noonan, B ;
Guild, BC ;
deJonge, BL ;
Carmel, G ;
Tummino, PJ ;
Caruso, A ;
Uria-Nickelsen, M ;
Mills, DM ;
Ives, C ;
Gibson, R ;
Merberg, D ;
Mills, SD ;
Jiang, Q ;
Taylor, DE ;
Vovis, GF ;
Trost, TJ .
NATURE, 1999, 397 (6715) :176-180
[2]   PEDIGREES OF SOME MUTANT STRAINS OF ESCHERICHIA-COLI K-12 [J].
BACHMANN, BJ .
BACTERIOLOGICAL REVIEWS, 1972, 36 (04) :525-557
[3]   IDENTIFICATION AND CHARACTERIZATION OF RECD, A GENE AFFECTING PLASMID MAINTENANCE AND RECOMBINATION IN ESCHERICHIA-COLI [J].
BIEK, DP ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1986, 167 (02) :594-603
[4]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[5]   INVITRO GENE FUSIONS THAT JOIN AN ENZYMATICALLY ACTIVE BETA-GALACTOSIDASE SEGMENT TO AMINO-TERMINAL FRAGMENTS OF EXOGENOUS PROTEINS - ESCHERICHIA-COLI PLASMID VECTORS FOR THE DETECTION AND CLONING OF TRANSLATIONAL INITIATION SIGNALS [J].
CASADABAN, MJ ;
CHOU, J ;
COHEN, SN .
JOURNAL OF BACTERIOLOGY, 1980, 143 (02) :971-980
[6]   Comparison between Pyrococcus horikoshii and Pyrococcus abyssi genome sequences reveals linkage of restriction-modification genes with large genome polymorphisms [J].
Chinen, A ;
Uchiyama, I ;
Kobayashi, I .
GENE, 2000, 259 (1-2) :109-121
[7]   Chromosomal evolution in Saccharomyces [J].
Fischer, G ;
James, SA ;
Roberts, IN ;
Oliver, SG ;
Louis, EJ .
NATURE, 2000, 405 (6785) :451-454
[8]  
Galitski T, 1997, GENETICS, V146, P751
[9]  
GERDES K, 2000, HORIZONTAL GENE POOL, P49
[10]   GENETIC-ANALYSIS OF THE RECE PATHWAY OF GENETIC-RECOMBINATION IN ESCHERICHIA-COLI K-12 [J].
GILLEN, JR ;
WILLIS, DK ;
CLARK, AJ .
JOURNAL OF BACTERIOLOGY, 1981, 145 (01) :521-532