Ion permeation through a voltage-sensitive gating pore in brain sodium channels having voltage sensor mutations

被引:113
作者
Sokolov, S [1 ]
Scheuer, T [1 ]
Catterall, WA [1 ]
机构
[1] Univ Washington, Dept Pharmacol, Seattle, WA 98195 USA
关键词
D O I
10.1016/j.neuron.2005.06.012
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Voltage-gated sodium channels activate in response to depolarization, but it is unknown whether the voltage-sensing arginines in their S4 segments pivot across the lipid bilayer as voltage sensor paddles or move through the protein in a gating pore. Here we report that mutation of pairs of arginine gating charges to glutamine induces cation permeation through a gating pore in domain 11 of the Na(v)1.2a channel. Mutation of R850 and R853 induces a K+-selective inward cationic current in the resting state that is blocked by activation. Remarkably, mutation of R853 and R856 causes an outward cationic current with the opposite gating polarity. These results support a model in which the IIS4 gating charges move through a narrow constriction in a gating pore in the sodium channel protein during gating. Paired substitutions of glutamine allow cation movement through the constriction when appropriately positioned by the gating movements of the S4 segment.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 37 条
[1]   Specificity of charge-carrying residues in the voltage sensor of potassium channels [J].
Ahern, CA ;
Horn, R .
JOURNAL OF GENERAL PHYSIOLOGY, 2004, 123 (03) :205-216
[2]   SODIUM-CHANNELS AND GATING CURRENTS [J].
ARMSTRONG, CM .
PHYSIOLOGICAL REVIEWS, 1981, 61 (03) :644-683
[3]   A NEUTRAL AMINO-ACID CHANGE IN SEGMENT-IIS4 DRAMATICALLY ALTERS THE GATING PROPERTIES OF THE VOLTAGE-DEPENDENT SODIUM-CHANNEL [J].
AULD, VJ ;
GOLDIN, AL ;
KRAFTE, DS ;
CATTERALL, WA ;
LESTER, HA ;
DAVIDSON, N ;
DUNN, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :323-327
[4]   Three transmembrane conformations and sequence-dependent displacement of the S4 domain in shaker K+ channel gating [J].
Baker, OS ;
Larsson, HP ;
Mannuzzu, LM ;
Isacoff, EY .
NEURON, 1998, 20 (06) :1283-1294
[5]  
CATTERALL WA, 1986, ANNU REV BIOCHEM, V55, P953, DOI 10.1146/annurev.biochem.55.1.953
[6]   Voltage sensor-trapping:: Enhanced activation of sodium channels by β-scorpion toxin bound to the S3-S4 loop in domain II [J].
Cestèle, S ;
Qu, YS ;
Rogers, JC ;
Rochat, H ;
Scheuer, T ;
Catterall, WA .
NEURON, 1998, 21 (04) :919-931
[7]   Neutralization of gating charges in domain II of the sodium channel α subunit enhances voltage-sensor trapping by a β-scorpion toxin [J].
Cestèle, S ;
Scheuer, T ;
Mantegazza, M ;
Rochat, H ;
Catterall, WA .
JOURNAL OF GENERAL PHYSIOLOGY, 2001, 118 (03) :291-301
[8]   Voltage sensors in domains III and IV, but not I and II, are immobilized by Na+ channel fast inactivation [J].
Cha, A ;
Ruben, PC ;
George, AL ;
Fujimoto, E ;
Bezanilla, F .
NEURON, 1999, 22 (01) :73-87
[9]  
Creighton TE, 1994, PROTEINS STRUCTURE M
[10]   Molecular architecture of the KvAP voltage-dependent K+ channel in a lipid bilayer [J].
Cuello, LG ;
Cortes, DM ;
Perozo, E .
SCIENCE, 2004, 306 (5695) :491-495