An assessment of metal removal by a laboratory scale wetland

被引:64
作者
Mungur, AS
Shutes, RBE
Revitt, DM
House, MA
机构
关键词
heavy metal removal efficiencies; laboratory scale; macrophytes; subsurface-flow wetland;
D O I
10.1016/S0273-1223(97)00061-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a preliminary assessment of the heavy metal removal performance by a laboratory scale wetland based on the design of a constructed wetland treating surface runoff. Laboratory scale gravel-substrate subsurface-flow wetlands in a continuous recirculating mode were studied regarding the removal of Cu, Pb and Zn from contaminated water. After establishing the flow characteristics, the wetland was planted with Typha latifolia, Phragmites australis, Schoenoplectus lacustris and In's pseudacorus. The wetland system was dosed with increasing concentrations (1, 5 and 10mg/l) of Cu, Pb and Zn. Finally a shock load of metals (concentration 20 mg/l) was introduced to simulate a storm event. In each experiment water samples collected from the outlet at timed intervals were analysed and loadings calculated in order to assess the metal removal efficiency of the system. The removal efficiences and rates for these different doses ranged from 81.7% to 91.8% and 36.6 to 372.7 mg/m(2)/d for Cu, 75.8% to 95.3% and 30.8 to 387 mg/m(2)/d for Pb and 82.8% to 90.4% and 33.6 to 362.1 mg/m(2)/d for Zn respectively. Results for the storm simulation showed that in the time taken for the water level to subside to its original level (just below the substrate surface) at established outlet flow rates, the metal loadings leaving the system remained very low with the wetland system retaining over 99% of the metals. These results indicate the ability of the system to act as an efficient sink for heavy metals. The macrophytes were collected and segregated by species and subsurface tissue type (rhizomes, roots and root tips) and analysed for Cu, Pb and Zn. The results are discussed with respect to the surrounding peat substrate, biomass accumulation and the overall removal performance of the laboratory scale wetland. (C) 1997 IAWQ.
引用
收藏
页码:125 / 133
页数:9
相关论文
共 17 条
[1]  
BLAKE G, 1982, EPURATION EAUX PLANT
[2]  
Crowder AA, 1991, TRENDS SOIL SCI, V1, P315
[3]   RHIZOSPHERE OXYGENATION BY TYPHA-DOMINGENSIS PERS IN MINIATURE ARTIFICIAL WETLAND FILTERS USED FOR METAL REMOVAL FROM WASTEWATERS [J].
DUNBABIN, JS ;
POKORNY, J ;
BOWMER, KH .
AQUATIC BOTANY, 1988, 29 (04) :303-317
[4]  
EGER P, 1988, CONSTRUCTED WETLANDS, P780
[5]  
ELLIS JB, 1994, SCI TOTAL ENVIRON, V145, P543
[6]  
KADLEC RH, 1996, TREATMENT WETLANDS
[7]   ADSORPTION COMPARED WITH SULFIDE PRECIPITATION AS METAL REMOVAL PROCESSES FROM ACID-MINE DRAINAGE IN A CONSTRUCTED WETLAND [J].
MACHEMER, SD ;
WILDEMAN, TR .
JOURNAL OF CONTAMINANT HYDROLOGY, 1992, 9 (1-2) :115-131
[8]   An assessment of metal removal from highway runoff by a natural wetland [J].
Mungur, AS ;
Shutes, RBE ;
Revitt, DM ;
House, MA .
WATER SCIENCE AND TECHNOLOGY, 1995, 32 (03) :169-175
[9]  
PARR TW, 1990, ADV WAT POLLUT CONTR, V11, P67
[10]  
ROGERS KH, 1991, RES J WATER POLLUT C, V63, P934