Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism

被引:364
作者
Silvestri, L
Caputo, V
Bellacchio, E
Atorino, L
Dallapiccola, B
Valente, EM
Casari, G
机构
[1] San Raffaele Sci Univ Inst, DIBIT, Human Mol Genet Unit, I-20132 Milan, Italy
[2] Mendel Inst Med Genet & Twin Res, IRCCS CSS, Rome, Italy
[3] Univ Roma La Sapienza, Dept Expt Med & Pathol, Rome, Italy
[4] Vita Salute San Raffaele Univ, Milan, Italy
关键词
D O I
10.1093/hmg/ddi377
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parkinson's disease (PD) is a progressive neurodegenerative illness associated with a selective loss of dopaminergic neurons in the nigrostriatal pathway of the brain. Despite the overall rarity of the familial forms of PD, the identification of single genes linked to the disease has yielded crucial insights into possible mechanisms of neurodegeneration. Recently, a putative mitochondrial kinase, PINK1, has been found mutated in an inherited form of parkinsonism. Here, we describe that PINK1 mutations confer different autophosphorylation activity, which is regulated by the C-terminal portion of the protein. We also demonstrate the mitochondrial localization of both wild-type and mutant PINK1 proteins unequivocally and prove that a short N-terminal part of PINK1 is sufficient for its mitochondrial targeting.
引用
收藏
页码:3477 / 3492
页数:16
相关论文
共 44 条
[1]   Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia [J].
Atorino, L ;
Silvestri, L ;
Koppen, M ;
Cassina, L ;
Ballabio, A ;
Marconi, R ;
Langer, T ;
Casari, G .
JOURNAL OF CELL BIOLOGY, 2003, 163 (04) :777-787
[2]   Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability [J].
Beilina, A ;
Van Der Brug, M ;
Ahmad, R ;
Kesavapanyt, S ;
Miller, DW ;
Petsko, GA ;
Cookson, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (16) :5703-5708
[3]   The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization [J].
Canet-Avilés, RM ;
Wilson, MA ;
Miller, DW ;
Ahmad, R ;
McLendon, C ;
Bandyopadhyay, S ;
Baptista, MJ ;
Ringe, D ;
Petsko, GA ;
Cookson, MR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (24) :9103-9108
[4]   Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease [J].
Casari, G ;
De Fusco, M ;
Ciarmatori, S ;
Zeviani, M ;
Mora, M ;
Fernandez, P ;
De Michele, G ;
Filla, A ;
Cocozza, S ;
Marconi, R ;
Dürr, A ;
Fontaine, B ;
Ballabio, A .
CELL, 1998, 93 (06) :973-983
[5]   α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease [J].
Chen, L ;
Feany, MB .
NATURE NEUROSCIENCE, 2005, 8 (05) :657-663
[6]   Computational method to predict mitochondrially imported proteins and their targeting sequences [J].
Claros, MG ;
Vincens, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1996, 241 (03) :779-786
[7]   Pathways to parkinsonism [J].
Cookson, MR .
NEURON, 2003, 37 (01) :7-10
[8]   Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method [J].
Cserzo, M ;
Wallin, E ;
Simon, I ;
vonHeijne, G ;
Elofsson, A .
PROTEIN ENGINEERING, 1997, 10 (06) :673-676
[9]   Proteomic analysis of the mouse liver mitochondrial inner membrane [J].
Da Cruz, S ;
Xenarios, I ;
Langridge, J ;
Vilbois, F ;
Parone, PA ;
Martinou, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (42) :41566-41571
[10]   Parkinson's disease: Mechanisms and models [J].
Dauer, W ;
Przedborski, S .
NEURON, 2003, 39 (06) :889-909