Adaptive evolution of bacterial metabolic networks by horizontal gene transfer

被引:350
作者
Pál, C
Papp, B
Lercher, MJ
机构
[1] European Mol Biol Lab, D-69012 Heidelberg, Germany
[2] Eotvos Lorand Univ, MTA, Theoret Biol & Ecol Res Grp, H-1117 Budapest, Hungary
[3] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
[4] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England
基金
匈牙利科学研究基金会;
关键词
D O I
10.1038/ng1686
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Numerous studies have considered the emergence of metabolic pathways(1), but the modes of recent evolution of metabolic networks are poorly understood. Here, we integrate comparative genomics with flux balance analysis to examine (i) the contribution of different genetic mechanisms to network growth in bacteria, (ii) the selective forces driving network evolution and (iii) the integration of new nodes into the network. Most changes to the metabolic network of Escherichia coli in the past 100 million years are due to horizontal gene transfer, with little contribution from gene duplicates. Networks grow by acquiring genes involved in the transport and catalysis of external nutrients, driven by adaptations to changing environments. Accordingly, horizontally transferred genes are integrated at the periphery of the network, whereas central parts remain evolutionarily stable. Genes encoding physiologically coupled reactions are often transferred together, frequently in operons. Thus, bacterial metabolic networks evolve by direct uptake of peripheral reactions in response to changed environments.
引用
收藏
页码:1372 / 1375
页数:4
相关论文
共 30 条
[1]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[2]   Evolution of enzymes in metabolism: A network perspective [J].
Alves, R ;
Chaleil, RAG ;
Sternberg, MJE .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (04) :751-770
[3]   Computational inference of scenarios for α-proteobacterial genome evolution [J].
Boussau, B ;
Karlberg, EO ;
Frank, AC ;
Legault, BA ;
Andersson, SGE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (26) :9722-9727
[4]   Flux coupling analysis of genome-scale metabolic network reconstructions [J].
Burgard, AP ;
Nikolaev, EV ;
Schilling, CH ;
Maranas, CD .
GENOME RESEARCH, 2004, 14 (02) :301-312
[5]   Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network [J].
Förster, J ;
Famili, I ;
Fu, P ;
Palsson, BO ;
Nielsen, J .
GENOME RESEARCH, 2003, 13 (02) :244-253
[6]   Experimental determination and system level analysis of essential genes in Escherichia coli MG1655 [J].
Gerdes, SY ;
Scholle, MD ;
Campbell, JW ;
Balázsi, G ;
Ravasz, E ;
Daugherty, MD ;
Somera, AL ;
Kyrpides, NC ;
Anderson, I ;
Gelfand, MS ;
Bhattacharya, A ;
Kapatral, V ;
D'Souza, M ;
Baev, MV ;
Grechkin, Y ;
Mseeh, F ;
Fonstein, MY ;
Overbeek, R ;
Barabási, AL ;
Oltvai, ZN ;
Osterman, AL .
JOURNAL OF BACTERIOLOGY, 2003, 185 (19) :5673-5684
[7]   On the nature of gene innovation: Duplication patterns in microbial genomes [J].
Hooper, SD ;
Berg, OG .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (06) :945-954
[8]   Horizontal gene transfer among genomes: The complexity hypothesis [J].
Jain, R ;
Rivera, MC ;
Lake, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3801-3806
[9]   Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae [J].
Kellis, M ;
Birren, BW ;
Lander, ES .
NATURE, 2004, 428 (6983) :617-624
[10]   EcoCyc:: a comprehensive database resource for Escherichia coli [J].
Keseler, IM ;
Collado-Vides, J ;
Gama-Castro, S ;
Ingraham, J ;
Paley, S ;
Paulsen, IT ;
Peralta-Gill, M ;
Karp, PD .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D334-D337