On the construction of one-dimensional iterative maps from the invariant density: The dynamical route to the beta distribution

被引:25
作者
Diakonos, FK [1 ]
Schmelcher, P [1 ]
机构
[1] UNIV CALIF SANTA BARBARA,DEPT PHYS,SANTA BARBARA,CA 93106
关键词
NON-LINEAR TRANSFORMATIONS; UNIVERSALITY; SYSTEMS; CHAOS;
D O I
10.1016/0375-9601(95)00971-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Frobenius-Perron functional equation we construct a one-dimensional iterative map resulting from a given invariant density. As a specific example we focus on the symmetric beta distribution and obtain a class of maps with a broad range of universal properties. The analytical behaviour as well as the bifurcation routes of these maps are studied in some detail.
引用
收藏
页码:199 / 203
页数:5
相关论文
共 24 条
[1]   EXPLORING CHAOTIC MOTION THROUGH PERIODIC-ORBITS [J].
AUERBACH, D ;
CVITANOVIC, P ;
ECKMANN, JP ;
GUNARATNE, G ;
PROCACCIA, I .
PHYSICAL REVIEW LETTERS, 1987, 58 (23) :2387-2389
[2]   FRACTAL DIMENSION OF FEIGENBAUM ATTRACTORS FOR A CLASS OF ONE-DIMENSIONAL MAPS [J].
BHATTACHARJEE, JK .
PHYSICS LETTERS A, 1986, 117 (07) :339-340
[3]   A NEW UNIVERSALITY FOR FRACTAL DIMENSIONS OF FEIGENBAUM-TYPE ATTRACTORS [J].
CAO, KF ;
LIU, RL ;
PENG, SL .
PHYSICS LETTERS A, 1989, 136 (4-5) :213-215
[4]   DETERMINATION OF CORRELATION SPECTRA IN CHAOTIC SYSTEMS [J].
CHRISTIANSEN, F ;
PALADIN, G ;
RUGH, HH .
PHYSICAL REVIEW LETTERS, 1990, 65 (17) :2087-2090
[5]   UNIVERSAL PROPERTIES OF MAPS ON AN INTERVAL [J].
COLLET, P ;
ECKMANN, JP ;
LANFORD, OE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 76 (03) :211-254
[6]  
Collet P, 1980, Iterated maps on the interval as dynamical systems
[7]   FLUCTUATIONS AND SIMPLE CHAOTIC DYNAMICS [J].
CRUTCHFIELD, JP ;
FARMER, JD ;
HUBERMAN, BA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 92 (02) :45-82
[8]   Statistical properties of chaos demonstrated in a class of one-dimensional maps [J].
Csordas, Andras ;
Geza Gyoergyi ;
Szepfalusy, Peter ;
Tel, Tamas .
CHAOS, 1993, 3 (01) :31-49
[9]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[10]   UNIVERSAL METRIC PROPERTIES OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1979, 21 (06) :669-706