Neuro-fuzzy systems for function approximation

被引:153
作者
Nauck, D [1 ]
Kruse, R [1 ]
机构
[1] Univ Magdeburg, Fac Comp Sci, D-39106 Magdeburg, Germany
关键词
neuro-fuzzy system; function approximation; structure learning; parameter learning;
D O I
10.1016/S0165-0114(98)00169-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present a neuro-fuzzy architecture for function approximation based on supervised learning. The learning algorithm is able to determine the structure and the parameters of a fuzzy system. The approach is an extension to our already published NEFCON and NEFCLASS models which are used for control or classification purposes. The proposed extended model, which we call NEFPROX, is more general and can be used for any application based on function approximation. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 35 条
  • [1] [Anonymous], P 1995 ACM S APPL CO
  • [2] LEARNING AND TUNING FUZZY-LOGIC CONTROLLERS THROUGH REINFORCEMENTS
    BERENJI, HR
    KHEDKAR, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05): : 724 - 740
  • [3] Now comes the time to defuzzify neuro-fuzzy models
    Bersini, H
    Bontempi, G
    [J]. FUZZY SETS AND SYSTEMS, 1997, 90 (02) : 161 - 169
  • [4] BERSINI H, 1997, P 7 INT FUZZ SYST AS, V2, P354
  • [5] BEZDEK JC, 1992, IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, P1035, DOI 10.1109/FUZZY.1992.258797
  • [6] Brown M, 1994, NEUROFUZZY ADAPTIVE
  • [7] NEURAL NETS FOR FUZZY-SYSTEMS
    BUCKLEY, JJ
    HAYASHI, Y
    [J]. FUZZY SETS AND SYSTEMS, 1995, 71 (03) : 265 - 276
  • [8] SUGENO TYPE CONTROLLERS ARE UNIVERSAL CONTROLLERS
    BUCKLEY, JJ
    [J]. FUZZY SETS AND SYSTEMS, 1993, 53 (03) : 299 - 303
  • [9] FUZZY NEURAL NETWORKS - A SURVEY
    BUCKLEY, JJ
    HAYASHI, Y
    [J]. FUZZY SETS AND SYSTEMS, 1994, 66 (01) : 1 - 13
  • [10] Driankov D., 1993, INTRO FUZZY CONTROL