On the convergence of pattern search algorithms

被引:860
作者
Torczon, V
机构
[1] Department of Computer Science, College of William and Mary, Williamsburg
[2] Dept. of Computational Mathematics, Ctr. Res. on Parallel Computation, Rice University, Houston
关键词
unconstrained optimization; convergence analysis; direct search methods; globalization strategies; alternating variable search; axial relaxation; local variation; coordinate search; evolutionary operation; pattern search; multidirectional search; downhill simplex search;
D O I
10.1137/S1052623493250780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an abstract definition of pattern search methods for solving nonlinear unconstrained optimization problems. Our definition unifies an important collection of optimization methods that neither compute nor explicitly approximate derivatives. We exploit our characterization of pattern search methods to establish a global convergence theory that does not enforce a notion of sufficient decrease. Our analysis is possible because the iterates of a pattern search method lie on a scaled, translated integer lattice. This allows us to relax the classical requirements on the acceptance of the step, at the expense of stronger conditions on the form of the step, and still guarantee global convergence.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 18 条
[1]  
[Anonymous], APPLIED STATISTICS
[2]  
Avriel M., 2003, NONLINEAR PROGRAMMIN
[3]  
BOX MJ, 1969, ICI MONOGRAPH, V5
[4]  
Cea J., 1971, Optimisation, theorie et algorithmes
[5]   VARIABLE METRIC METHOD FOR MINIMIZATION [J].
Davidon, William C. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (01) :1-17
[6]   DIRECT SEARCH METHODS ON PARALLEL MACHINES [J].
Dennis, J. E., Jr. ;
Torczon, Virginia .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (04) :448-474
[7]  
HOOKE R, 1961, J ACM, V8, P212, DOI 10.1145/321062.321069
[8]  
MORE JJ, 1983, MATH PROGRAMMING STA, P256
[9]   A SIMPLEX-METHOD FOR FUNCTION MINIMIZATION [J].
NELDER, JA ;
MEAD, R .
COMPUTER JOURNAL, 1965, 7 (04) :308-313
[10]  
Ortega J.M, 1970, CLASSICS APPL MATH