Impact of densitized lapse slicings on evolutions of a wobbling black hole

被引:21
作者
Sperhake, U [1 ]
Smith, KL
Kelly, B
Laguna, P
Shoemaker, D
机构
[1] Penn State Univ, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr Gravitat Wave Phys, University Pk, PA 16802 USA
[3] Cornell Univ, Ctr Radiophys & Space Res, Ithaca, NY 14853 USA
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.69.024012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present long-term stable and convergent evolutions of an excised wobbling black hole. Our results clearly demonstrate that the use of a densitized lapse function extends the lifetime of simulations dramatically. We also show the improvement in the stability of single static black holes when an algebraic densitized lapse condition is applied. In addition, we introduce a computationally inexpensive approach for tracking the location of the singularity suitable for mildly distorted black holes. The method is based on investigating the fall-off behavior and asymmetry of appropriate grid variables. This simple tracking method allows one to adjust the location of the excision region to follow the coordinate motion of the singularity.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Gauge conditions for long-term numerical black hole evolutions without excision -: art. no. 084023 [J].
Alcubierre, M ;
Brügmann, B ;
Diener, P ;
Koppitz, M ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2003, 67 (08)
[2]   A hyperbolic slicing condition adapted to Killing fields and densitized lapses [J].
Alcubierre, M ;
Corichi, A ;
González, JA ;
Núñez, D ;
Salgado, M .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (18) :3951-3968
[3]   Black hole excision for dynamic black holes -: art. no. 061501 [J].
Alcubierre, M ;
Brügmann, B ;
Pollney, D ;
Seidel, E ;
Takahashi, R .
PHYSICAL REVIEW D, 2001, 64 (06)
[4]   Simple excision of a black hole in 3+1 numerical relativity -: art. no. 104006 [J].
Alcubierre, M ;
Brügmann, B .
PHYSICAL REVIEW D, 2001, 63 (10)
[5]   3-DIMENSIONAL NUMERICAL RELATIVITY - THE EVOLUTION OF BLACK-HOLES [J].
ANNINOS, P ;
CAMARDA, K ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM ;
TOWNS, J .
PHYSICAL REVIEW D, 1995, 52 (04) :2059-2082
[6]   HORIZON BOUNDARY-CONDITION FOR BLACK-HOLE SPACETIMES [J].
ANNINOS, P ;
DAUES, G ;
MASSO, J ;
SEIDEL, E ;
SUEN, WM .
PHYSICAL REVIEW D, 1995, 51 (10) :5562-5578
[7]  
Arnowitt R, 1962, Gravitation: An Introduction to Current Research, P227
[8]   Numerical integration of Einstein's field equations [J].
Baumgarte, TW ;
Shapiro, SL .
PHYSICAL REVIEW D, 1999, 59 (02)
[9]   Computing the merger of black-hole binaries: The IBBH problem [J].
Brady, PR ;
Creighton, JDE ;
Thorne, KS .
PHYSICAL REVIEW D, 1998, 58 (06)
[10]   Grazing collisions of black holes via the excision of singularities [J].
Brandt, S ;
Correll, R ;
Gómez, R ;
Huq, M ;
Laguna, P ;
Lehner, L ;
Marronetti, P ;
Matzner, RA ;
Neilsen, D ;
Pullin, J ;
Schnetter, E ;
Shoemaker, D ;
Winicour, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (26) :5496-5499