Symbolic time series analysis for anomaly detection: A comparative evaluation

被引:49
作者
Chin, SC [1 ]
Ray, A [1 ]
Rajagopalan, V [1 ]
机构
[1] Penn State Univ, University Pk, PA 16802 USA
关键词
fault detection; symbolic dynamics; pattern recognition; complex systems;
D O I
10.1016/j.sigpro.2005.03.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent literature has reported a novel method for anomaly detection in complex dynamical systems, which relies on symbolic time series analysis and is built upon the principles of automata theory and pattern recognition. This paper compares the performance of this symbolic-dynamics-based method with that of other existing pattern recognition techniques from the perspectives of early detection of small anomalies. Time series data of observed process variables on the fast time-scale of dynamical systems are analyzed at slow time-scale epochs of (possible) anomalies. The results are derived from experiments on a nonlinear electronic system with a slowly varying dissipation parameter. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1859 / 1868
页数:10
相关论文
共 11 条
[1]  
Bapat RB., 1997, NONNEGATIVE MATRICES
[2]  
BECK C, 1993, THERMODYNAMICS CHAOT, DOI 10.1017/CBO9780511524585
[3]  
Bishop C. M., 1996, Neural networks for pattern recognition
[4]   A review of symbolic analysis of experimental data [J].
Daw, CS ;
Finney, CEA ;
Tracy, ER .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (02) :915-930
[5]  
Duda R.O., 2001, Pattern Classification, V2nd
[6]  
FUKUNAGA DP, 1990, STAT PATTERN RECOGNI
[7]  
Haykin S., 1999, Neural Networks: A Comprehensive Foundation, V2nd ed
[8]  
Kennel MB, 2003, PHYS REV LETT, V91, DOI [10.1103/PhysRevLett.91.084102, 10.1063/1.1612266]
[9]  
Lind D., 1995, An Introduction to Symbolic Dynamics and Coding, DOI [10.1017/CBO9780511626302, DOI 10.1017/CBO9780511626302]
[10]   Novelty detection: a review - part 1: statistical approaches [J].
Markou, M ;
Singh, S .
SIGNAL PROCESSING, 2003, 83 (12) :2481-2497